Skip to main content
Log in

Synthesis and growth mechanism of CdO nanoparticles prepared from thermal decomposition of CdSO3 nanorods

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, the transformation of acidic solution of cadmium acetate and sodium dithionite into CdSO3 nanorods through microemulsion/hydrothermal reaction is reported. The reaction time and microemulsion media are two factors that subjected to investigation. The reaction time was found to be crucial for the formation of nanorods but the microemulsion media have no important effect on the morphology of the products. The CdSO3 nanorods were yellow crystalline product having diameter of 70 nm as observed from scanning electron microscopy (SEM) results. The X-ray diffraction (XRD) pattern clearly shows the formation of CdSO3. The CdO nanoparticles (43 nm) were obtained by thermal decomposition of CdSO3 product at 700 °C. Powder XRD and SEM microscopy were used to characterize the obtained nanoparticles. The XRD analysis confirmed the purity of the as-prepared CdO. The reasonable growth mechanism for the formation of CdSO3 and CdO were also proposed. The direct band gap of the CdO nanoparticles showed blue shift of 1.0 eV, comparing with that of the bulk CdO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Sobhani, M. Salavati-Niasari, J. Alloys Compd. 617, 93 (2014)

    Article  Google Scholar 

  2. A. Sobhani, M. Salavati-Niasari, J. Alloys Compd. 625, 26 (2015)

    Article  Google Scholar 

  3. A. Sobhani, M. Salavati-Niasari, J. Mater. Sci.: Mater. Electron. 26, 6831 (2015)

    Google Scholar 

  4. A. Gulino, G. Compagnini, A.A. Scalisi, Chem. Mater. 15, 3332 (2003)

    Article  Google Scholar 

  5. Z.X. Yang, W. Zhong, Y.X. Yin, X. Du, Y. Deng, C. Au, Y.W. Du, Nanoscale Res. Lett. 5, 961 (2010)

    Article  Google Scholar 

  6. X. Liu, C. Li, S. Han, J. Han, C. Zhou, Appl. Phys. Lett. 82, 1950 (2003)

    Article  Google Scholar 

  7. X.-F. Wang, J.-J. Xu, H.-Y. Chen, J. Phys. Chem. C 112, 7151 (2008)

    Article  Google Scholar 

  8. C. Sravani, K.T.R. Reddy, O.M.D. Hussain, P.J. Reddy, J. Sol. Energy Soc. India 1, 6 (1996)

    Google Scholar 

  9. C.H. Champness, C.H. Chan, Sol. Energy Mater. Sol. Cells 37, 75 (1995)

    Article  Google Scholar 

  10. R. Kondo, H. Okimura, Y. Sakai, Jpn. J. Appl. Phys. 10, 1547 (1971)

    Article  Google Scholar 

  11. F.A. Benko, F.P. Koffyberg, Solid State Commun. 57, 901 (1986)

    Article  Google Scholar 

  12. A. Shiori, Jpn. Pat. 7, 909 (1997)

    Google Scholar 

  13. X. Liu, Z. Xu, Y. Shen, in Proceedings of the International Conference on Solid-State Sensors and Actuators, (Lisbon, 1997), p. 585

  14. K. Gurumurugan, D. Mangalaraj, S.A.K. Narayandass, J. Cryst. Growth 147, 355 (1995)

    Article  Google Scholar 

  15. K.T. Ramakrishna Reddy, C. Sravani, R.W. Miles, J. Cryst. Growth 184/185, 1031 (1998)

    Article  Google Scholar 

  16. A.J. Varkey, A.F. Fort, Thin Solid Films 239, 211 (1994)

    Article  Google Scholar 

  17. T.K. Subramanyam, G. Mohan Rao, S. Uthanna, Mater. Chem. Phys. 69, 133 (2001)

    Article  Google Scholar 

  18. X. Wu, R. Wang, B. Zou, P. Wu, L. Wang, J. Xu, W. Huang, Appl. Phys. Lett. 71, 2097 (1997)

    Article  Google Scholar 

  19. X.S. Peng, X.F. Wang, Y.W. Wang, C.Z. Wang, G.W. Meng, L.D. Zhang, J. Phys. D Appl. Phys. 35, L101 (2002)

    Article  Google Scholar 

  20. M. Ghosh, C.N.R. Rao, Chem. Phys. Lett. 393, 493 (2004)

    Article  Google Scholar 

  21. M. Ristic, S. Popovic, S. Music, Mater. Lett. 58, 2494 (2004)

    Article  Google Scholar 

  22. S. Ashoka, P. Chithaiah, G.T. Chandrappa, Mater. Lett. 64, 173 (2010)

    Article  Google Scholar 

  23. B. Nyberg, R. Larsson, Acta Chem. Scand. 27, 63 (1973)

    Article  Google Scholar 

  24. A. Askarinejad, A. Morsali, Mater. Lett. 62, 478 (2008)

    Article  Google Scholar 

  25. D. Wenting, Z. Congshan, Opt. Mater. 22, 227 (2003)

    Article  Google Scholar 

  26. A. Skinner, J.P. LaFemina, Phys. Rev. B 45, 3557 (1992)

    Article  Google Scholar 

  27. J. Jaffe, R. Pandey, A. Kunx, Phys. Rev. B 43, 14030 (1991)

    Article  Google Scholar 

  28. B.S. Zou, R.B. Little, J.P. Wang, M.A. El-sayed, Int. J. Quantum Chem. 72, 439 (1999)

    Article  Google Scholar 

  29. N. Ueda, H. Maeda, H. Hosono, H. Kawazoe, J. Appl. Phys. 84, 6174 (1998)

    Article  Google Scholar 

  30. J.I. Pankove, Optical Processes in Semiconductors (Dover Publications Inc., New York, 1970)

    Google Scholar 

  31. A.D. Yoffe, Adv. Phys. 42, 173 (1993)

    Article  Google Scholar 

  32. F. Dong, Y. Sun, W.K. Ho, Z. Wu, Dalton Trans. 41, 8270 (2012)

    Article  Google Scholar 

  33. B. Li, G. Rong, Y. Xie, L. Huang, C. Feng, Inorg. Chem. 45, 6404 (2006)

    Article  Google Scholar 

  34. G. Li, M. Liua, H. Liu, CrystEngCommun. 13, 5337 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Kharazmi University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Mohammadikish.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadikish, M., Hajisadeghi, H. Synthesis and growth mechanism of CdO nanoparticles prepared from thermal decomposition of CdSO3 nanorods. J Mater Sci: Mater Electron 27, 6480–6487 (2016). https://doi.org/10.1007/s10854-016-4589-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4589-z

Keywords

Navigation