Skip to main content
Log in

Effect of annealing on structural, dielectric, transport and magnetic properties of (Zn, Co) co-doped SnO2 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

After our first study of dielectric and magnetic properties in the (Zn, Co) co-doped SnO2 nanoparticles annealed at 600 °C, we present a comprehensive investigation of the structural, dielectric, transport and magnetic properties of chemically prepared pure and (Zn, Co) co-doped SnO2 nanoparticles annealed at 800 °C, using X-ray diffraction, transmission electron microscopy (TEM), L.C.R meter and magnetic properties measurement system (MPMS related SQUID). In all (Zn, Co) co-doped SnO2 samples prepared at 800 °C with Co content x ≤ 0.05, the SnO2 lattice contracts, dielectric constant and dielectric loss decreases whereas the electrical conductivity increases more than that of the 600 °C annealed samples. Room temperature ferromagnetic behavior observed in (Zn, Co) co-doped SnO2 samples. Increasing the Co content x to 0.03 leads to an increasing the ferromagnetic behavior, afterward the ferromagnetic behavior is observed to be decreases. A comparative study shows that (Zn, Co) co-doped SnO2 nanoparticles annealed at 800 °C have an excellent dielectric, magnetic properties and high electrical conductivity than that of the 600 °C annealed data, thus, they can be used as high frequency devices, ultrahigh dielectric materials and spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Nie, J. Tang, K.L. Wang, Quest for high-Curie temperature Mn x Ge1−x diluted magnetic semiconductors for room-temperature spintronics applications. J. Cryst. Growth 425, 279–282 (2015)

    Article  Google Scholar 

  2. G.V. Lashkarev, V.V. Slynko, Z.D. Kovalyuk, V.I. Sichkovskyi, M.V. Radchenko, P. Aleshkevych, R. Szymczak, W. Dobrowolski, Anomalies of magnetic properties of layered crystals InSe containing Mn. Mater. Sci. Eng. C 27, 1052–1055 (2007)

    Article  Google Scholar 

  3. H. Jiang, X.F. Liu, Z.Y. Zou, Z.B. Wu, B. He, R.H. Yu, The effect of surfactants on the magnetic and optical properties of Co-doped SnO2 nanoparticles. Appl. Surf. Sci. 258, 236–241 (2011)

    Article  Google Scholar 

  4. H. Liu, X. Cheng, H. Liu, J. Yang, Y. Liu, X. Liu, M. Gao, M. Wei, X. Zhang, Y. Jiang, Structural optical and magnetic properties of Cu and V co-doped ZnO nanoparticles. Phys. E Low Dimens. Syst. Nanostruct. 47, 5–27 (2013)

    Google Scholar 

  5. B. Choudhury, A. Choudhury, Oxygen vacancy and dopant concentration dependent magnetic properties of Mn doped TiO2 nanoparticle. Curr. Appl. Phys. 13, 1025–1031 (2013)

    Article  Google Scholar 

  6. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: a spin-based electronics vision for the future. Science. 294, 1488–1495 (1998)

    Article  Google Scholar 

  7. K.S. Burch, D.D. Awschalom, D.N. Basov, Optical properties of III-Mn-V ferromagnetic semiconductors. J. Magn. Magn. Mater. 320, 3207–3228 (2008)

    Article  Google Scholar 

  8. J. Hays, A. Punnoose, M. Engelhard, J. Peloquin, K. Reddy, Development of high-temperature ferromagnetism in SnO2 and paramagnetism in SnO by Fe doping. Phys. Rev. B 72, 054402 (2005)

    Article  Google Scholar 

  9. K. Nomura, C.A. Barrero, J. Sakuma, M. Takeda, Room-temperature ferromagnetism of sol–gel-synthesized Sn1−xFex57O2−δ powders. Phys. Rev. B 75, 184411 (2007)

    Article  Google Scholar 

  10. V. Bilovol, A.M.M. Navarro, C.E.R. Torres, F.H. Sanchez, A.F. Cabrera, Magnetic and structural study of Fe doped tin dioxide. Phys. B. 404, 2834–2837 (2009)

    Article  Google Scholar 

  11. L. Fang, X. Zu, C. Liu, Z. Li, G. Peleckis, S. Zhu, H. Liu, L. Wang, Microstructure and magnetic properties in Sn1−x Fe x O2 (x = 0.01, 0.05, 0.10) nanoparticles synthesized by hydrothermal method. J. Alloys Compd. 491, 679–699 (2010)

    Article  Google Scholar 

  12. S.K. Misra, S.I. Andronenko, K.M. Reddy, J. Hays, A. Thurber, A. Punnoose, A variable temperature Fe3+ electron paramagnetic resonance study of Sn1−xFexO2 (0.00 ≤ x ≤ 0.05). J. Appl. Phys. 101, 09H120 (2007)

    Article  Google Scholar 

  13. C. Van Komen, A. Punnoose, M.S. Seehra, Transition from n-type to p-type destroys ferromagnetism in semiconducting Sn1−x Co x O2 and Sn1 x Cr x O2 nanoparticles. Solid States Commun. 149, 2257–2259 (2009)

    Article  Google Scholar 

  14. J.M. Coey, A.P. Douvalis, C.B. Fitzgerald, M. Venkatesan, Ferromagnetism in Fe-doped SnO2 thin films. Appl. Phys. Lett. 84, 1332 (2004)

    Article  Google Scholar 

  15. Punnoose, J. Hays, Possible metamagnetic origin of ferromagnetism in transition-metal-doped SnO2. J. Appl. Phys. 97, 10D321 (2005)

    Article  Google Scholar 

  16. W. Wang, Z. Wang, Y. Hong, J. Tang, M. Yu, Structure and magnetic properties of Cr/Fe-doped SnO2 thin films. J. Appl. Phys. 99, 08M115 (2006)

    Google Scholar 

  17. S.B. Ogale, R.J. Choudhary, J.P. Buban, S.E. Lofland, S.R. Shinde, S.N. Kale, V.N. Kulkarni, J. Higgins, C. Lanci, J.R. Simpson, N.D. Browning, S.D. Sarma, H.D. Drew, R.L. Greene, T. Venkatesan, High temperature ferromagnetism with a giant magnetic moment in transparent Co-doped SnO(2-delta). Phys. Rev. Lett. 91, 077205 (2003)

    Article  Google Scholar 

  18. J.M.D. Coey, P. Stamenov, R.D. Gunning, M. Venkatesan, K. Paul, Ferromagnetism in defect-ridden oxides and related materials. New J. Phys. 12, 053025 (2010)

    Article  Google Scholar 

  19. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173 (2005)

    Article  Google Scholar 

  20. C.W. Zhang, P. Wang, F. Li, First-principles study on surface magnetism in Co-doped (110) SnO2 thin film. Solid State Sci. 13, 1608–1611 (2011)

    Article  Google Scholar 

  21. F. Bouamra, A. Boumeddiene, M. Rerat, H. Belkhir, First principles calculations of magnetic properties of Rh-dope SnO2(1 1 0) surfaces. Appl. Surf. Sci. 269, 41–44 (2013)

    Article  Google Scholar 

  22. G. Rahman, V.M. García-Suárez, Surface-induced magnetism in C-doped SnO2. Appl. Phys. Lett. 96, 052508 (2010)

    Article  Google Scholar 

  23. M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, K. Thavamani, A novel microwave synthesis of nanocrystalline SnO2 and its structural optical and dielectric properties. J. Mater. Sci. Mater. Electron. 25, 730–735 (2014)

    Article  Google Scholar 

  24. R. Adnan, N. Razana, I. Rahman, M. Farrukh, Synthesis and characterization of high surface area tin oxide nanoparticles via the sol–gel method as a catalyst for the hydrogenation of styrene. J. Chin. Chem. Soc. 57, 222–229 (2010)

    Article  Google Scholar 

  25. P. Mohanapriya, R. Pradeepkumar, N. Jaya, T. Natarajan, Magnetic and optical properties of electrospun hollow nanofibers of SnO2 doped with Ce-ion. Appl. Phys. Lett. 105, 022406 (2014)

    Article  Google Scholar 

  26. D. Toloman, A. Popa, O. Raita, M. Stan, R. Suciu, M.O. Miclaus, A.R. Biris, Luminescent properties of vanadium-doped SnO2 nanoparticles. Opt. Mater. 37, 223–228 (2014)

    Article  Google Scholar 

  27. F.A. Mir, K.M. Batoo, I. Chatterjee, G.M. Bhat, Preparation and ac electrical characterizations of Cd doped SnO2 nanoparticles. J. Mater. Sci. Mater. Electron. 25, 1564–1570 (2014)

    Article  Google Scholar 

  28. B. Zhao, G. Shao, B. Fan, W. Zhao, R. Zhang, Enhanced microwave absorption capabilities of Ni microspheres after coating with SnO2 nanoparticles. J. Mater. Sci. Mater. Electron. 26(7), 5393–5399 (2015)

    Article  Google Scholar 

  29. X. Su, F. Luo, Y. Jia, J. Wang, J. Xu, X. He, C. Fu, S. Liu, reparation and electromagnetic property of Al-doped SnO2 powders by co-precipitation method in the GHz range. J. Mater. Sci. Mater. Electron. 25, 5101–5106 (2014)

    Article  Google Scholar 

  30. X. Huang, J. Zhang, M. Lai, T. Sang, Preparation and microwave absorption mechanisms of the NiZn ferrite nanofibers. J. Alloy Compd. 627, 367–373 (2015)

    Article  Google Scholar 

  31. X. Huang, Y. Chen, J. Yu, J. Zhang, T. Sang, G. Tao, H. Zhu, Fabrication and electromagnetic loss properties of Fe3O4 nanofibers. J. Mater. Sci. Mater. Electron. 26, 3474–3478 (2015)

    Article  Google Scholar 

  32. X. Chou, J. Zhai, H. Jiang, X. Yao, Dielectric properties and relaxor behavior of rare-earth (La, Sm, Eu, Dy, Y) substituted barium zirconium titanate ceramics. J. Appl. Phys. 102, 084106 (2007)

    Article  Google Scholar 

  33. J. Hays, A. Punnoose, M. Engelhard, J. Peloquin, K. Reddy, Relationship between the structural and magnetic properties of Co-doped SnO2 nanoparticles. Phys. Rev. B 72, 075203 (2005)

    Article  Google Scholar 

  34. H. Zhanga, D. Wangb, V. Hua, X. Kangb, H. Liub, Synthesis and magnetic properties of Sn1−xCoxO2 nanostructures and their application in gas sensing. Sens. Actuators B 184, 288–294 (2013)

    Article  Google Scholar 

  35. X. Liu, J. Iqbal, Z. Wu, B. He, R. Yu, Structure and room-temperature ferromagnetism of Zn-doped SnO2 nanorods preparedby solvothermal method. J. Phys. Chem. C 114, 4790 (2010)

    Article  Google Scholar 

  36. K. Nomura, J. Okabayashi, K. Okamura, Y. Yamada, Magnetic properties of Fe and Co codoped SnO2 prepared by sol–gel method. J. Appl. Phys. 110, 083901 (2011)

    Article  Google Scholar 

  37. R. Khan, M.H. Fang, Dielectric and magnetic properties of (Zn, Co) co-doped SnO2 nanoparticles. Chin. Phy. B. 24, 127803 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

Rajwali Khan and Zulfiqar would like thankful to the department of Material Science and Engineering Zhejiang University China and Abdul Wali Khan University Mardan Pakistan for providing some experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajwali Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, R., Zulfiqar & Zaman, Y. Effect of annealing on structural, dielectric, transport and magnetic properties of (Zn, Co) co-doped SnO2 nanoparticles. J Mater Sci: Mater Electron 27, 4003–4010 (2016). https://doi.org/10.1007/s10854-015-4254-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4254-y

Keywords

Navigation