Skip to main content
Log in

Enhanced thermal stability and fatigue resistance in MTiO3-modified (K0.5Na0.5)0.94Li0.06NbO3 lead-free piezoelectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The MTiO3 (M = Ca, Sr, Ba, Bi0.5Na0.5, Bi0.5K0.5 and Bi0.5Li0.5)-modified (K0.5Na0.5)0.94Li0.06NbO3 lead-free piezoelectric ceramics were prepared using normal sintering for improving the temperature stability and fatigue resistance of (K0.5Na0.5)NbO3-based ceramics. Results showed that MTiO3 substitution into (K0.5Na0.5)0.94Li0.06NbO3 shifts the polymorphic phase transition below room temperature. The dominant crystal phase changes from coexistence of orthorhombic and tetragonal phase to tetragonal phase with the MTiO3 addtion. Accordingly, the temperature stability and fatigue resistance of the modified ceramics were significantly improved. It was found that 1.0 mol% MTiO3 (M = Ca)-modified (K0.5Na0.5)0.94Li0.06NbO3 ceramics exhibited nearly temperature-independent properties (25–160 °C), fatigue-free behavior (up to 105 cycles) and good piezoelectric properties (d *33  = 245 pm/V), indicating these materials promising for actuator and transducers applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.F. Li, K. Wang, F.Y. Zhu, L.Q. Cheng, F.Z. Yao, J. Am. Ceram. Soc. 96, 3677–3696 (2013)

    Article  Google Scholar 

  2. J.G. Wu, D.Q. Xiao, J.G. Zhu, J. Mater. Sci. Mater. Electron. (in press) doi:10.1007/s10854-015-3084-2

  3. F.Z. Yao, J. Glaum, K. Wang, W. Jo, J. Rödel, J.F. Li, Appl. Phys. Lett. 103, 192907 (2013)

    Article  Google Scholar 

  4. Y.J. Dai, X.W. Zhang, K.P. Chen, Appl. Phys. Lett. 94(4), 042905 (2009)

    Article  Google Scholar 

  5. R. Zuo, J. Fu, G.Z. Yin, X.L. Li, J.Z. Jiang, Appl. Phys. Lett. 101(9), 092906 (2012)

    Article  Google Scholar 

  6. K. Wang, F.Z. Yao, W. Jo, D. Gobeljic, V.V. Shvartsman, D.C. Lupascu, J.F. Li, J. Rödel, Adv. Funct. Mater. 23(33), 4079–4086 (2013)

    Article  Google Scholar 

  7. S.J. Zhang, R. Xia, H. Hao, H.X. Liu, T.R. Shrout, Appl. Phys. Lett. 92, 152904 (2008)

    Article  Google Scholar 

  8. T.A. Skidmore, T.P. Comyn, S.J. Milne, Appl. Phys. Lett. 94, 222902 (2009)

    Article  Google Scholar 

  9. D.C. Lupascu, J. Rödel, Adv. Eng. Mater. 7(10), 882–898 (2005)

    Article  Google Scholar 

  10. R.P. Wang, H. Bando, M. Itoh, Appl. Phys. Lett. 95, 092905 (2009)

    Article  Google Scholar 

  11. Y.P. Guo, K. Kakimoto, H. Ohsato, Appl. Phys. Lett. 85, 4121 (2004)

    Article  Google Scholar 

  12. J.G. Hao, W.F. Bai, B. Shen, J.W. Zhai, J. Alloys Compd. 534, 13–19 (2012)

    Article  Google Scholar 

  13. X.J. Cheng, J.G. Wu, X.P. Wang, B.Y. Zhang, J.G. Zhu, D.Q. Xiao, X.J. Wang, X.J. Lou, W.F. Liang, J. Appl. Phys. 114, 124107 (2013)

    Article  Google Scholar 

  14. J.G. Hao, Z.J. Xu, R.Q. Chu, Y.J. Zhang, Q. Chen, W. Li, P. Fu, G.Z. Zang, G.R. Li, Q.R. Yin, J. Electron. Mater. 39, 347–354 (2010)

    Article  Google Scholar 

  15. D.M. Lin, K.W. Kwok, J. Mater. Sci. Mater. Electron. 23, 501–505 (2012)

    Article  Google Scholar 

  16. J.G. Hao, Z.J. Xu, R.Q. Chu, W. Li, J. Du, J. Mater. Res.(in press) doi:10.1557/jmr.2015.169

  17. Y.F. Chang, Z.P. Yang, L.L. Wei, B. Liu, Mater. Sci. Eng. A 437, 301–305 (2006)

    Article  Google Scholar 

  18. J.G. Wu, D.Q. Xiao, Y.Y. Wang, J.G. Zhu, W. Shi, W.J. Wu, B. Zhang, J. Li, J. Alloys Compd. 476, 782–786 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 51402144, 51372110, 51302124), the Project of Shandong Province Higher Educational Science and Technology Program (Grant Nos. J14LA11 and J14LA10), the National High Technology Research and Development Program of China (No. 2013AA030801), Science and Technology Planning Project of Guangdong Province, China (No. 2013B091000001), Independent innovation and achievement transformation in Shandong Province special, China (No. 2014CGZH0904), the Natural Science Foundation of Shandong Province of China (Grant No. ZR2014JL030), and the Research Foundation of Liaocheng University (Nos. 318051407, 318011301, 318011306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, J., Xu, Z., Chu, R. et al. Enhanced thermal stability and fatigue resistance in MTiO3-modified (K0.5Na0.5)0.94Li0.06NbO3 lead-free piezoelectric ceramics. J Mater Sci: Mater Electron 26, 7867–7872 (2015). https://doi.org/10.1007/s10854-015-3437-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3437-x

Keywords

Navigation