Skip to main content
Log in

Effect of precursors on the microstructural, optical, electrical and electrochromic properties of WO3 nanocrystalline thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Spray-deposited tungsten oxide (WO3) nanocrystalline thin films were investigated by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and atomic force microscopy in order to study the precursor induced changes in their structural and morphological properties. The crystallite size and the root mean square surface roughness have been found to be minimum for the WO3 thin films prepared using ammonium tungstate. The optical and spectral studies of the films were carried out using UV–visible spectroscopy and photoluminescence spectroscopy. Electrical transport properties of the films were studied by measuring the film resistivity as a function of temperature. Electrochromic studies of the WO3 films were carried out from cyclic voltammetry, chronocoulometry and chronoamperometry measurements. The films grown using ammonium tungstate exhibit high electrochromic reversibility (~91 %) and large charge storage capacity. The cyclic voltammograms of the films do not change even after 50 scan cycles, confirming the electrochromic stability in the WO3 films. Overall, the film prepared using ammonium tungstate may be a suitable candidate for electrochromic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. H.M.A. Soliman, A.B. Kashyout, M.S.E. Nouby, A.M. Abosehly, J. Mater. Sci. Mater. Electron. 21, 1313 (2010)

    Article  Google Scholar 

  2. P.M.S. Monk, R.J. Mortimer, D.R. Rosseinsky, Electrochromism: Fundamentals and Applications (VCH, Weinheim, 1995)

    Book  Google Scholar 

  3. G.F. Cai, J.P. Tu, D. Zhou, X.L. Wang, C.D. Gu, Sol. Energy Mater. Sol. Cells 124, 103 (2014)

    Article  Google Scholar 

  4. V.V. Kondalkar, R.R. Kharade, S.S. Mali, R.M. Mane, P.B. Patil, P.S. Patil, S. Choudhury, P.N. Bhosale, Superlattices Microstruct. 73, 290 (2014)

    Article  Google Scholar 

  5. S.R. Bathe, P.S. Patil, Solid State Ionics 179, 314 (2008)

    Article  Google Scholar 

  6. R. Huang, Y. Shen, L. Zhao, M. Yan, Adv. Powder Technol. 23, 211–214 (2012)

    Article  Google Scholar 

  7. S.M.A. Durrani, E.E. Khawaja, M.A. Salim, M.F. Al-Kuhaili, A.M. Al-Shukri, Sol. Energy Mater. Sol. Cells 71, 313 (2002)

    Article  Google Scholar 

  8. J.Y. Luo, W. Li, F. Chen, X.X. Chen, W.D. Li, H.Y. Wu, Y.J. Gao, Q.G. Zeng, Sens. Actuators B 197, 81 (2014)

    Article  Google Scholar 

  9. H. Wang, Y. Gan, X. Dong, S. Peng, L. Dong, Y. Wang, J. Mater. Sci. Mater. Electron. 23, 2229 (2012)

    Article  Google Scholar 

  10. W. Zeng, Y. Li, H. Zhang, J. Mater. Sci. Mater. Electron. 25, 1512 (2014)

    Article  Google Scholar 

  11. O. Berger, T. Hoffmann, W.-J. Fischer, V. Melev, J. Mater. Sci. Mater. Electron. 15, 483 (2004)

    Article  Google Scholar 

  12. A.J. More, R.S. Patil, D.S. Dalavi, S.S. Mali, C.K. Hong, M.G. Gang, J.H. Kim, P.S. Patil, Mater. Lett. 134, 298 (2014)

    Article  Google Scholar 

  13. S.B. Kulkarni, A.T. Mane, S.T. Navale, P.S. Kulkarni, R.N. Mulik, V.B. Patil, J. Mater. Sci. Mater. Electron. 26, 1087 (2015)

    Article  Google Scholar 

  14. C.-P. Li, C. Engtrakul, R.C. Tenent, C.A. Wolden, Sol. Energy Mater. Sol. Cells 132, 6 (2015)

    Article  Google Scholar 

  15. L.M. Bertus, C. Faure, A. Danine, C. Labrugere, G. Campet, A. Rougier, A. Duta, Mater. Chem. Phys. 140, 49 (2013)

    Article  Google Scholar 

  16. K. Paipitak, W. Techitdheera, S. Porntheeraphat, W. Pecharapa, Energy Procedia 34, 689 (2013)

    Article  Google Scholar 

  17. V. Bornand, P. Papet, E. Philippot, J. Mater. Sci. Lett. 18, 483 (1999)

    Article  Google Scholar 

  18. S.B. Weber, H.L. Lein, T. Grande, M.A. Einarsrud, Surf. Coat. Technol. 221, 53 (2013)

    Article  Google Scholar 

  19. A. Verma, A.K. Bakhshi, S.A. Agnihotry, Electrochim. Acta 51, 4639 (2006)

    Article  Google Scholar 

  20. D.V. Dharmadhikari, S.K. Nikam, A.A. Athawale, J. Alloys Compd. 590, 486 (2014)

    Article  Google Scholar 

  21. R. Mukherjee, A. Kushwaha, P.P. Sahay, Electron. Mater. Lett. 10, 401 (2014)

    Article  Google Scholar 

  22. C.M. Ghimbeu, M. Lumbreras, M. Siadat, J. Schoonman, Mater. Sci. Semicond. Process. 13, 1 (2010)

    Article  Google Scholar 

  23. C. Li, F. Lin, R.M. Richards, C. Engtrakul, R.C. Tenent, C.A. Wolden, Sol. Energy Mater. Sol. Cells 121, 163 (2014)

    Article  Google Scholar 

  24. W.H. Lai, L.G. Teoh, Y.H. Su, J. Shieh, M.H. Hon, J. Alloys Compd. 438, 247 (2007)

    Article  Google Scholar 

  25. S. Badilescu, P.V. Ashrit, Solid State Ionics 158, 187 (2003)

    Article  Google Scholar 

  26. K. Miyake, H. Kaneko, M. Sano, N. Suedomi, J. Appl. Phys. 55, 2747 (1984)

    Article  Google Scholar 

  27. H. Simchi, B.E. McCandless, T. Meng, W.N. Shafarman, J. Alloys Compd. 617, 609 (2014)

    Article  Google Scholar 

  28. P.V. Ashrit, Thin Solid Films 385, 81 (2001)

    Article  Google Scholar 

  29. J. M. Wang, X.W. Sun, Z. Jiao, Materials 3, 5029 (2010)

    Article  Google Scholar 

  30. C. Li, R.C. Tenent, A.C. Dillon, R.M. Morrish, C.A. Wolden, Electrochem Lett 1, H24 (2012)

    Article  Google Scholar 

  31. Z. Jiao, X.W. Sun, J. Wang, L. Ke, H.V. Demir, J. Phys. D Appl. Phys. 43, 285501 (2010)

    Article  Google Scholar 

  32. J. Zhang, S.A. Wessel, K. Colbow, Thin Solid Films 185, 265 (1990)

    Article  Google Scholar 

  33. R. Mukherjee, P.P. Sahay, J. Mater. Sci. Mater. Electron. 26, 2679 (2015)

    Article  Google Scholar 

  34. M.A. Wahab, Solid State Physics, 2nd edn. (Narosa Publishing House, New Delhi, 2010), p. 32

    Google Scholar 

  35. R. Senthilkumar, G. Ravi, C. Sekar, M. Arivanandhan, M. Navaneethan, Y. Hayakawa, J. Mater. Sci. Mater. Electron. 26, 1389 (2015)

    Article  Google Scholar 

  36. A. Cremonesi, D. Bersani, P.P. Lottici, Y. Djaoued, P.V. Ashrit, J. Non-Cryst. Solids 345&346, 500 (2004)

    Article  Google Scholar 

  37. A.L. Bassi, D. Cattaneo, V. Russo, C.E. Bottani, E. Barborini, T. Mazza, P. Piseri, P. Milani, F.O. Ernst, K. Wegner, S.E. Pratsinis, J. Appl. Phys. 98, 074305 (2005)

    Article  Google Scholar 

  38. B. Karunagaran, K. Kim, D. Mangalaraj, J. Yi, S. Velumani, Sol. Energy Mater. Sol. Cells 88, 199 (2005)

    Article  Google Scholar 

  39. Y. Lei, W.K. Chim, H.P. Sun, G. Wilde, Appl. Phys. Lett. 86, 103106 (2005)

    Article  Google Scholar 

  40. V.B. Kumar, D. Mohanta, Bull. Mater. Sci. 34, 435 (2011)

    Article  Google Scholar 

  41. M. Dudita, L. Isac, A. Duta, Bull. Mater. Sci. 35, 997 (2012)

    Article  Google Scholar 

  42. D. Beena, K.J. Lethy, R. Vinodkumar, V.P.M. Pillai, V. Ganesan, D.M. Phase, S.K. Sudheer, Appl. Surf. Sci. 255, 8334 (2009)

    Article  Google Scholar 

  43. A. Goswami, Thin Film Fundamentals (New Age International, New Delhi, 2005)

    Google Scholar 

  44. M. Feng, A.L. Pan, H.R. Zhang, Z.A. Li, F. Liu, H.W. Liu, D.X. Shi, B.S. Zou, H.J. Gao, Appl. Phys. Lett. 86, 141901 (2005)

    Article  Google Scholar 

  45. M. Manfredi, C. Paracchini, G.C. Salviati, G. Schianchi, Thin Solid Films 79, 161 (1981)

    Article  Google Scholar 

  46. S. Chen, X. Zhao, H. Xie, J. Liu, L. Duan, X. Ba, J. Zhao, Appl. Surf. Sci. 258, 3255 (2012)

    Article  Google Scholar 

  47. Y.M. Zhao, W.B. Hu, Y.D. Xia, E.F. Smith, Y.Q. Zhu, C.W. Dunnill, D.H. Gregory, J. Mater. Chem. 17, 4436 (2007)

    Article  Google Scholar 

  48. B.M. Sinelnikov, E.V. Sokolenko, V.Y. Zvekov, Inorg. Mater. 32, 999 (1996)

    Google Scholar 

  49. H.F. Wolf, Semiconductors (Wiley-Interscience, New York, 1971)

    Google Scholar 

  50. R. Mukherjee, C.S. Prajapati, P.P. Sahay, J. Mater. Eng. Perform. 23, 3141 (2014)

    Article  Google Scholar 

  51. P.S. Patil, P.R. Patil, S.S. Kamble, S.H. Pawar, Sol. Energy Mater. Sol. Cells 60, 143 (2000)

    Article  Google Scholar 

  52. J.S.E.M. Svensson, C.G. Granqvist, Appl. Phys. Lett. 45, 828 (1984)

    Article  Google Scholar 

  53. H. Kamal, A.A. Akl, K. Abdel-Hady, Phys. B 349, 192 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Centre for Interdisciplinary Research, MNNIT Allahabad, India for providing XRD and AFM facilities. They are grateful to Professor P. Chakrabarti, Director, MNNIT, India for providing electrochemical study measurement facility. They are also thankful to Professor M. Aslam, Department of Metallurgical Engineering and Materials Science, IIT Bombay, India for extending Raman, SEM and PL measurement faculties. Financial support provided by the University Grants Commission, New Delhi, India, in the form of a major research project [No. 40-450/2011 (SR)] is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Sahay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, R., Sahay, P.P. Effect of precursors on the microstructural, optical, electrical and electrochromic properties of WO3 nanocrystalline thin films. J Mater Sci: Mater Electron 26, 6293–6305 (2015). https://doi.org/10.1007/s10854-015-3216-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3216-8

Keywords

Navigation