Skip to main content
Log in

Relationships between processing conditions, morphology, and I–V characteristics in P3HT:PCBM solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, the effects of processing conditions comprising poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) ratio, P3HT concentration, co-solvent, thermal annealing, solvent annealing and the embedment of calcium as an exciton blocking layer on power conversion efficiency were studied. Polymer bulk heterojunction solar cells having a glass/ITO/PEDOT:PSS/P3HT:PCBM/(Ca)/Al sequence were fabricated. The main purpose of this work was to investigate the most effective parameters influencing the performance of polymer solar cells all in one study. Among these parameters, the role of high boiling point co-solvent such as N-Methyl-2-pyrrolidone, dimethyl sulfoxide and diiodooctane were emphasized. The morphology of the active layer was investigated using atomic force microscopy and field emission scanning electron microscopy (FESEM). The utilization of dimethyl sulfoxide as a co-solvent (5 %) led to larger heights on the surface whereas the solvent annealing reduced them and this sequence can disturb the size and distribution of PCBM domains. Incorporating diiodooctane as a co-solvent increased the short circuit current about three orders of magnitude. FESEM images showed a fibrillar structure for P3HT phase with approximately 25 nm in diameter and up to 250 nm in length. The presence of a thin Ca layer exhibited a significant effect on all I–V parameters, particularly on the fill factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Y. Xia, R.H. Friend, Macromolecules 38, 6466 (2005)

    Article  Google Scholar 

  2. F.C. Krebs, S.A. Gevorgyan, J. Alstrup, J. Mater. Chem. 19, 5442 (2009)

    Article  Google Scholar 

  3. C.J. Brabec, N.S. Sariciftci, J.C. Hummelen, Adv. Funct. Mater. 11, 15 (2001)

    Article  Google Scholar 

  4. C.J. Brabec, Sol Energy Mater Sol C 83, 273 (2004)

    Article  Google Scholar 

  5. F. Padinger, R.S. Rittberger, N.S. Sariciftci, Adv. Funct. Mater. 13, 1 (2003)

    Article  Google Scholar 

  6. S.E. Shaheen et al., Appl. Phys. Lett. 78, 841 (2001)

    Article  Google Scholar 

  7. N.S. Sariciftci et al., Science 258, 1474 (1992)

    Article  Google Scholar 

  8. G. Yu et al., Science 270, 1789 (1995)

    Article  Google Scholar 

  9. H. Hoppe, N.S. Sariciftci, Adv. Polym. Sci. 214, 1 (2008)

    Google Scholar 

  10. A.C. Arango et al., Adv. Mater. 12, 1689 (2000)

    Article  Google Scholar 

  11. J. Piris et al., J. Phys. Chem. C 113, 14500 (2009)

    Article  Google Scholar 

  12. A.J. Moul, K. Meerholz, Adv. Mater. 20, 240 (2008)

    Article  Google Scholar 

  13. C.J. Brabec et al., Adv. Mater. 22, 3839 (2010)

    Article  Google Scholar 

  14. H. Hoppe, N.S. Sariciftci, J. Mater. Chem. 16, 45 (2006)

    Article  Google Scholar 

  15. J.A. Gratt, R.E. Cohen, J. Appl. Polym. Sci. 91, 3362 (2004)

    Article  Google Scholar 

  16. G. Li et al., Nature Mater 4, 864 (2005)

    Article  Google Scholar 

  17. J.K. Lee et al., J. Am. Chem. Soc. 130, 3619 (2008)

    Article  Google Scholar 

  18. W. Li et al., Polymer 51, 3031 (2010)

    Article  Google Scholar 

  19. Q. Hou et al., J. Mater. Sci.: Mater. Electron. 24, 4284 (2013)

    Google Scholar 

  20. X. Li et al., J. Mater. Sci.: Mater. Electron. 25, 140 (2014)

    Google Scholar 

  21. Q. Hou et al., J. Mater. Sci.: Mater. Electron. 24, 536 (2013)

    Google Scholar 

  22. N.S. Sabri et al., J. Mater. Sci.: Mater. Electron. 24, 2183 (2013)

    Google Scholar 

  23. P.E. Shaw, A. Ruseckas, I.D.W. Samuel, Adv. Mater. 20, 3516 (2008)

    Article  Google Scholar 

  24. H. Wang et al., Nanoscale 3, 2280 (2011)

    Article  Google Scholar 

  25. M.C. Heiber, A. Dhinojwala, J. Phys. Chem. C 117, 21627 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate the Iran National Science Foundation for their financial support under Project No. 89002375.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Abbasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasiri, M., Abbasi, F. Relationships between processing conditions, morphology, and I–V characteristics in P3HT:PCBM solar cells. J Mater Sci: Mater Electron 26, 2639–2646 (2015). https://doi.org/10.1007/s10854-015-2738-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2738-4

Keywords

Navigation