Skip to main content
Log in

Optimization of structural, surface and electrical properties of solution processed LaNiO3 conducting oxide

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Growth, structural and electrical properties of perovskite type LaNiO3 thin film nanostructures using chemical solution deposition at annealing temperatures ranging from 550 to 800 °C has been optimized. Poly-vinyl alcohol was used as stabilizing agent in the precursor solutions. X-ray diffraction and AFM, respectively confirmed phase purity and nanostructured growth with mono dispersed crystallite distribution at processing temperature of 700 °C. Crystalline strain as low as 1 % was estimated from the XRD peaks; confirming relaxed and stable LNO crystalline structure deposited on quartz substrate. A systematic variation in the resistivity and carrier concentration with annealing temperatures were observed, revealing that 700 °C is an optimum temperature for a phase pure LNO films with smooth surface structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V. Shelke, D. Mazumdar, G. Srinivasan, A. Gupta, J. Appl. Phys. 109, 07D914 (2011)

    Article  Google Scholar 

  2. W.F. Qin, J. Xiong, J. Zhu, J.L. Tang, W.J. Jie, X.H. Wei, Y. Zhang, Y.R. Li, J. Mater. Sci.: Mater. Electron. 19, 429–433 (2008)

    Google Scholar 

  3. K. Li, Z. Wen, D. Wu, H. Zhai, A. Li, J. Phys. D Appl. Phys. 46, 035308 (2013)

    Article  Google Scholar 

  4. A. Chopra, E. Panda, Y. Kim, M. Arredondo, D. Hesse, J. Electroceram. 32, 404–408 (2014)

    Article  Google Scholar 

  5. W. Lu, P. Zheng, W. Du, Z. Meng, J. Mater. Sci.: Mater. Electron. 15, 739–742 (2004)

    Google Scholar 

  6. G.S. Wang, Q. Zhao, X.J. Meng, J.H. Chu, D. Re´miens. J. Cryst. Growth 277, 450–456 (2005)

    Article  Google Scholar 

  7. Z.J. Wang, T. Kumagai, H. Kokawa, J. Cryst. Growth 290, 161–165 (2006)

    Article  Google Scholar 

  8. N. Wakiya, T. Azuma, K. Shinozaki, N. Mizutani, Thin Solid Films 410, 114–120 (2002)

    Article  Google Scholar 

  9. A.-D. Li, C.Z. Ge, D. Wu, P. Lu, Y.Q. Zuo, S. Yang, N. Ming, Thin Solid Films 298, 165–169 (1997)

    Article  Google Scholar 

  10. H.-Y. Lee, C.-H. Hsu, Y.-W. Hsieh, Y.-H. Chen, Y.-C. Liang, T.-B. Wu, L.J. Chou, Mater. Chem. Phys. 92, 585–590 (2005)

    Article  Google Scholar 

  11. K.M. Satyalakshmi, R.M. Mallya, K.V. Ramanathan, X.D. Wu, B. Brainard et al., Appl. Phys. Lett. 62, 1233 (1993)

    Article  Google Scholar 

  12. C. Li, P. Ge, Lü, and N. Ming. Appl. Phys. Lett. 68, 1347 (1996)

    Article  Google Scholar 

  13. K.-S. Hwang, B.-H. Kim, J. Korean Phys. Soc. 34(1), 51–54 (1999)

    Google Scholar 

  14. K.-T. Kim, S.-H. Song, C.-Il Kim, J. Korean Phys. Soc. 45, S783–S786 (2004)

    Google Scholar 

  15. G. Wu, K. Ruan, T. Liang, X. Chen, D. Bao, Thin Solid Films 517, 1563–1566 (2009)

    Article  Google Scholar 

  16. V. Faucheux, S. Pignard, M. Audier, J. Solid State Chem. 177, 4616–4625 (2004)

    Article  Google Scholar 

  17. M.L. Medarde, J. Phys.: Condens. Matter 9, 1679 (1997)

    Google Scholar 

  18. M. Chen, T. Wu, J. Wu, Appl. Phys. Lett. 68, 1430 (1996)

    Article  Google Scholar 

  19. W.J. Jie, Y. Zhang, J. Mater. Sci.: Mater. Electron. 21, 149–152 (2010)

    Google Scholar 

  20. B. Wang, S. Gu, Y. Ding, Y. Chu, Z. Zhang, X. Ba, Q. Zhang, X. Li, Analyst 138, 362–367 (2013)

    Article  Google Scholar 

  21. S. Miyake, S. Fujihara, T. Kimura, J. Eur. Ceram. Soc. 21, 1525 (2001)

    Article  Google Scholar 

  22. U.S. Joshi, S.J. Trivedi, K.H. Bhavsar, U.N. Trivedi, S.A. Khan et al., J. Appl. Phys. 105, 073704 (2009)

    Article  Google Scholar 

  23. M. M.-H. Jafan, M.-Reza Z.-Meymian, R. Rahimi, M. Rabbani, J. Nanostruct. Chem. 4, 89 (2014)

  24. Z. Ecsedi, Chem. Bull. “POLITEHNICA” Univ. (Timişoara) 52(66), 1–2 (2007)

    Google Scholar 

  25. B.D. Cullity, Elements of X-Ray Diffraction, vol. 2 (Addison-Wesley Publishing Company, Inc, Boston, 1956), pp. 99–265

    Google Scholar 

  26. T.B. Wu, C.L. Liu, Y.W. Liu, J. Mater. Res. 17(6), 1350 (2002)

    Article  Google Scholar 

  27. Lia, D. Wu, Z. Liu, C. Ge, X. Liu, G. Chen, N. Ming, Thin Solid Films 336, 386–390 (1998)

    Article  Google Scholar 

  28. M.W. Zhu, Z.J. Wang, Y.N. Chen, H.L. Wang, Z.D. Zhang, Appl. Phys. A 112, 1011–1018 (2013)

    Article  Google Scholar 

  29. P. Ruello, S. Zhang, P. Laffez, B. Perrin, V. Gusev, Phys. Rev. B 79, 094303 (2009)

    Article  Google Scholar 

  30. J.L. Garcia-Munoz, J. Rodriguez-Carvajal, P. Lacorre, J.B. Torrance, Phys. Rev. B 46, 4414 (1992)

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank Dr. A. K. Debnath for fruitful discussions. NCP thank DAE-BRNS for research fellowship under the project sanction No. 2011/37P/13/BRNS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. S. Joshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandya, N.C., Joshi, U.S. Optimization of structural, surface and electrical properties of solution processed LaNiO3 conducting oxide. J Mater Sci: Mater Electron 26, 2445–2450 (2015). https://doi.org/10.1007/s10854-015-2704-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2704-1

Keywords

Navigation