Skip to main content
Log in

Experimental investigation on structural and optical properties of ZnO: AZO nano particles by hydrothermal synthesis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The undoped and Al-doped ZnO (AZO) nanostructures were synthesized by using simple hydrothermal process with two different pH values 6 and 10. The structural and optical properties of the ZnO and 0.5 % AZO nano particles were investigated using field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscope, atomic force microscope, X-ray diffraction (XRD), Ultraviolet–visible (UV) spectroscopy and photoluminescence (PL). It is observed from XRD results; on aluminium doping the crystalline size reduces significantly. It can be clearly seen from the FESEM images that Al doping causes the crystalline structure of ZnO to agglomerated small grain nano particles and TEM confirms that the particles are of nanometer size. The UV absorption indicates that blue shift of the samples increases the optical band gap, and decreases the average crystallite size. In the PL spectra, undoped ZnO exhibit an excitonic peak in the UV region and a defect-related peak in the visible region, whereas Al doping leads to a suppression of c lattice parameter and blue shift of luminescence with blue and green emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.M. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, J. Appl. Phys. 98, 86 (2005)

    Article  Google Scholar 

  2. C. Klingshirn, Chem. Phys. Chem. 8, 782 (2007)

    Google Scholar 

  3. V. Musat, A.M. Rego, R. Monteiro, E. Forttunato, Thin Solid Films 516, 1512–1515 (2008)

    Article  Google Scholar 

  4. T. Minami, S. Ida, T. Yao, Mater. Sci. Eng. B 75, 190–198 (2000)

    Article  Google Scholar 

  5. Ting-Jen Hsueh, Cheng-Liang Hsu, Sens. Actuators B Chem. 131(2), 572–576 (2008)

    Article  Google Scholar 

  6. K. Momeni, G.M. Odegard, R.S. Yassar, Acta Mater. 60, 5117–5124 (2012)

    Article  Google Scholar 

  7. S. Choopun, R.D. Vispute, W. Noch, A. Balasamo, R.P. Sharma, T. Venkatesan, A. Lliadies, D.C. Look, Appl. Phys. Lett. 75, 3947–3949 (1999)

    Article  Google Scholar 

  8. B.J. Jin, S. Im, S.Y. Lee, Thin Solid Films 366, 107–110 (2000)

    Article  Google Scholar 

  9. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983 (1996)

    Article  Google Scholar 

  10. L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y. Zhang, R.J. Saykally, P. Yang, Angew. Chem. Int. Ed. 42, 3031–3034 (2003)

    Article  Google Scholar 

  11. Y.W. Heo, D.P. Norton, S.J. Pearton, J. Appl. Phys. 98, 1–6 (2005)

    Article  Google Scholar 

  12. S.A. Studenikin, N. Golego, M. Cocivera, J. Appl. Phys. 84, 2287 (1998)

    Article  Google Scholar 

  13. R.G. Gordon, Criteria for choosing transparent conductors. MRS Bull. 25, 52–57 (2000)

    Article  Google Scholar 

  14. M. Benhaliliba, C.E. Benouis, M.S. Aida, A.S. Juarez, F. Yakuphanoglu, A.T. Silver, J. Alloys Compd. 506, 548–553 (2010)

    Article  Google Scholar 

  15. L. Grigorjeva, D. Millers, K. Smits, C. Monty, J. Kouam, L. ElMir, Solid State Phenom. 128, 141–146 (2007)

    Article  Google Scholar 

  16. Suresh C. Pillai, John M. Kelly, Raghavendra Ramesh, Declan E. McCormackad, J. Mater. Chem. A 1, 3268–3271 (2013)

    Article  Google Scholar 

  17. A.M. Marijn, D.V. Versteegh, J.I. Dijkhuis, Phys. Rev. Lett. 108, 157402 (2012)

    Article  Google Scholar 

  18. K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 79, 988 (2001)

    Article  Google Scholar 

  19. L. Yan, C.K. Ong, X.S. Rao, J. Appl. Phys. 96, 508 (2004)

    Article  Google Scholar 

  20. Z.L. Wang, J. Phys. Condens. Matter 16, R829–R858 (2004)

    Article  Google Scholar 

  21. K. Shirouzu, T. Ohkusa, M. Hotta, N. Enomoto, J. Hojo, J. Ceram. Soc. Japan 115, 254–258 (2007)

    Article  Google Scholar 

  22. B. Houng, C.-L. Huang, S.-Y. Tsai, J. Cryst. Growth 307, 328–333 (2007)

    Article  Google Scholar 

  23. H. Agura, A. Suzuki, T. Matsushita, T. Aoki, M. Okuda, Thin Solid Films 445, p263–p267 (2003)

    Article  Google Scholar 

  24. K. Sambath, M. Saroja, M. Venkatachalam, K. Rajendran, N. Muthukumarasamy, J. Mater. Sci. Mater. Electron. 23, 431–436 (2012)

    Article  Google Scholar 

  25. C.-C. Lin, S.-Y. Chen, S.-Y. Cheng, H.-Y. Lee, Appl. Phys. Lett. 84, 5040–5042 (2004)

    Article  Google Scholar 

  26. J. Jolivet, S. Cassaignon, C. Chaneac, D. Chiche, O. Durupthy, D. Portehault, C. R. Chim. 13, 40–51 (2010)

    Article  Google Scholar 

  27. D.S. Rana, D.K. Chaturvedi, J.K. Quamara, J. Optoelectron Adv. Mater. 11(5), 705–712 (2009)

    Google Scholar 

  28. S. Suwanboon, P. Amornpitoksuk, A. Sukolrat, Dependence of optical properties on doping metal, crystallite size and defect concentration of M-doped ZnO nano powders (M = Al, Mg, Ti). Ceram. Int. 37, 1359–1365 (2011)

    Article  Google Scholar 

  29. T. Takagahara, K. Takeda, Theory of the quantum confinement effect on excitons in quantum dots of in direct-gap materials. Phys. Rev. B 46, 15578 (1992)

    Article  Google Scholar 

  30. S. Fung, W.M. Kwok, W.K. Chan, D.L. Phillips, L. Ding, W.K. Ge, Defects in ZnO nanorods prepared by a hydrothermal method. Phys. Chem. B 110, 20865–20871 (2006)

    Article  Google Scholar 

  31. C.H. Ahn, Y.Y. Kim, D.C. Kim, S.K. Mohanta, H.K. Cho, A comparative analysis of deep level emission in ZnO layers deposited by various methods. J. Appl. Phys. 105, 089901–089902 (2009)

    Article  Google Scholar 

  32. J.L. Driscoll, N. Khare, Y. Liu, M.E. Vickers, Adv. Mater. 19, 2925–2929 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the Department of Bio-Sciences, Sri Krishna Arts and Science College, Coimbatore for providing the laboratory facilities and Centre for Nano science and technology of Sathyabama University, Chennai to carry out characterization for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Raj Mohan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj Mohan, R., Sambath, K. & Rajendran, K. Experimental investigation on structural and optical properties of ZnO: AZO nano particles by hydrothermal synthesis. J Mater Sci: Mater Electron 26, 1748–1755 (2015). https://doi.org/10.1007/s10854-014-2603-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2603-x

Keywords

Navigation