Skip to main content
Log in

Development of block copolymer-templated crack-free mesoporous anatase-TiO2 film: tailoring sol–gel and EISA processing parameters and photovoltaic characteristics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A new facile strategy for preparation of mesoporous anatase-TiO2 films by a combination of sol–gel and evaporation-induced self-assembly (EISA) processes aided by tri-block Pluronic F127 is reported. Two major parameters, sol preparation and EISA processing parameters, are identified for preparation of mesoporous crack-free films with desired thickness. The mesoporous crack-free films with thickness of 650 nm can be obtained with low water: precursor molar ratio (e.g., 2.5:1) under aging in 10 % relative humidity for 72 h at the low temperature of 5 °C. Although template: precursor molar ratio and annealing temperature show little influence on preparation of crack-free films the optimum values are determined 0.005:1 and 350 °C, respectively. Reducing the aging temperature down to 5 °C not only hinders the anatase-to-rutile phase transformation but also retards crystal growth. Furthermore, Brunauer–Emmett–Teller and Barrett–Joyner–Helenda results show that the isotherm corresponding to synthesized powders represents a combination of types II and IV corresponding to mesoporous materials with average pore size in the range 5.8–8.8 nm and BET surface area of 72–99 m2/g. UV–Vis absorption spectrum of prepared mesoporous TiO2 film displays a blue shift relative to that of bulk TiO2 due to the quantum size effect. The mesoporous TiO2 film prepared under optimized conditions has good microstructural and optical properties for dye-sensitized solar cell (DSSC) applications. The DSSC made of optimized mesoporous TiO2 film shows cell efficiency and short circuit current density of 6.31 % 15.23 mA/cm2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Ernest, Advances in Nanoporous Materials (Elsevier, Amsterdam, 2009)

    Google Scholar 

  2. G.Q. Lu, X.S. Zhao, Nanoporous Materials Science and Engineering (Imperical College Press, London, 2004)

    Google Scholar 

  3. G.J.D.A.A. Soler-Illia, C. Sanchez, B. Lebeau, J. Patarin, Chem. Rev. 102, 4093 (2002)

    Article  Google Scholar 

  4. N. Pal, A. Bhaumik, Adv. Colloid Interface Sci. 189–190, 21 (2013)

    Article  Google Scholar 

  5. J.-L. Blin, M.-J. Stébé, T. Roques-Carmes, Colloids Surf. A Physicochem. Eng. Asp. 407, 177 (2012)

    Article  Google Scholar 

  6. J.H. Koh, J.A. Seo, S.H. Ahn, J.H. Kim, Thin Solid Films 519, 158 (2010)

    Article  Google Scholar 

  7. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359, 710 (1992)

    Article  Google Scholar 

  8. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Sci. Tech. Adv. Mater. 279, 548 (1998)

    Google Scholar 

  9. D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 120, 6024 (1998)

    Article  Google Scholar 

  10. D. Zhao, P. Yang, N. Melosh, J. Feng, B.F. Chmelka, G.D. Stucky, Adv. Mater. 10, 1380 (1998)

    Article  Google Scholar 

  11. D. Grosso, G.J.D.A.A. Soler-Illia, F. Babonneau, C. Sanchez, P.A. Albouy, A. Brunet-Bruneau, A.R. Balkenende, Adv. Mater. 13, 1085 (2001)

    Article  Google Scholar 

  12. H.S. Yun, K. Miyazawa, H. Zhou, I. Honma, M. Kuwabara, Adv. Mater. 13, 1377 (2001)

    Article  Google Scholar 

  13. Y.K. Hwang, K.-C. Lee, Y.-U. Kwon, Chem. Commun. 18, 1738 (2001)

    Article  Google Scholar 

  14. E.L. Crepaldi, G.J.D.A.A. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot, C. Sanchez, J. Am. Chem. Soc. 125, 9770 (2003)

    Article  Google Scholar 

  15. P.C.A. Alberius, K.L. Frindell, R.C. Hayward, E.J. Kramer, G.D. Stucky, B.F. Chmelka, Chem. Mater. 14, 3284 (2002)

    Article  Google Scholar 

  16. C.J. Brinker, Y. Lu, A. Sellinger, H. Fan, Adv. Mater. 11, 579 (1999)

    Article  Google Scholar 

  17. Y. Lu, R. Ganguli, C.A. Drewien, M.T. Anderson, C.J. Brinker, W. Gong, Y. Guo, H. Soyez, B. Dunn, M.H. Huang, J.I. Zink, Nature 389, 364 (1997)

    Article  Google Scholar 

  18. G.J.D.A.A. Soler-Illia, E.L. Crepaldi, D. Grosso, C. Sanchez, Curr. Opin. Colloid Interface Sci. 8, 109 (2003)

    Article  Google Scholar 

  19. J.H. Pan, X.S. Zhao, W.I. Lee, Chem. Eng. J. 170, 363 (2011)

    Article  Google Scholar 

  20. S.J. Bu, Z.G. Jin, X.X. Liu, L.R. Yang, Z.J. Cheng, J. Eur. Ceram. Soc. 25, 673 (2005)

    Article  Google Scholar 

  21. E.L. Crepaldi, G.J.D.A.A. Soler-Illia, D. Grosso, C. Sanchez, New J. Chem. 27, 9 (2003)

    Article  Google Scholar 

  22. C.-W. Koh, U.H. Lee, J.-K. Song, H.-R. Lee, M.-H. Kim, M. Suh, Y.-U. Kwon, Chem. An Asian J. 3, 862 (2008)

    Article  Google Scholar 

  23. Y.-S. Ko, C.-W. Koh, U.H. Lee, Y.-U. Kwon, Mic. Mes. Mater. 145, 141 (2011)

    Article  Google Scholar 

  24. P. Yang, D. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky, Chem. Mater. 11, 2813 (1999)

    Article  Google Scholar 

  25. B. Smarsly, D. Grosso, T. Brezesinski, N. Pinna, C. Boissie`re, M. Antonietti, C. Sanchez, Chem. Mater. 16, 2948 (2004)

    Article  Google Scholar 

  26. S.Y. Choi, M. Mamak, N. Coombs, N. Chopra, G.A. Ozin, Adv. Funct. Mater. 14, 335 (2004)

    Article  Google Scholar 

  27. M.R. Mohammadi, R.R.M. Louca, D.J. Fray, M.E. Welland, Sol. Energy 86, 2654 (2012)

    Article  Google Scholar 

  28. B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, London, 1978), p. 99

    Google Scholar 

  29. N. Alexaki, T. Stergiopoulos, A. Kontos, D. Tsoukleris, A. Katsoulidis, P. Pomonis, D. LeClere, P. Skeldon, G. Thompson, P. Falaras, Mic. Mes. Mater. 124, 52 (2009)

    Article  Google Scholar 

  30. D. Barros Filho, J. Benedetti, M. Pereira-da-Silva, V. Seriacopi, W. Gomes Silva, R. Alonso, H. Lewgoy, A. Anido-Anido, R. Amore, C. Anauate-Netto, Mic. Mes. Mater. 152, 84 (2012)

    Article  Google Scholar 

  31. S.Y. Choi, B. Lee, D.B. Carew, M. Mamak, F.C. Peiris, S. Speakman, N. Chopra, G.A. Ozin, Adv. Funct. Mater. 16, 1731 (2006)

    Article  Google Scholar 

  32. J.H. Pan, W.I. Lee, New J. Chem. 29, 841 (2005)

    Article  Google Scholar 

  33. Y. Zhang, Z. Xie, J. Wang, ACS Appl. Mater. Interfaces 1, 2789 (2009)

    Article  Google Scholar 

  34. Y. Zhang, C.H. Sim, A.H. Yuwono, J. Li, J. Wang, J. Am. Ceram. Soc. 92, 1317 (2009)

    Article  Google Scholar 

  35. W.Y. Gan, H. Zhao, R. Amal, Appl. Catal. A Gen. 354, 8 (2009)

    Article  Google Scholar 

  36. X. Bokhimi, A. Morales, F. Pedraza, J. Solid State Chem. 169, 176 (2002)

    Article  Google Scholar 

  37. M.R. Mohammadi, M. Ghorbani, M.C. Cordero-Cabrera, D.J. Fray, J. Sol-Gel Sci. Tech. 40, 15 (2006)

    Article  Google Scholar 

  38. M.R. Mohammadi, M.C. Cordero-Cabrera, D.J. Fray, M. Ghorbani, Sens. Actuat. B Chem. 120, 86 (2006)

    Article  Google Scholar 

  39. K.-N.P. Kumar, J. Kumar, K. Keizer, J. Am. Ceram. Soc. 77, 1396 (1994)

    Article  Google Scholar 

  40. P.A. Webb, C. Orr, Analytical Methods in Fine Particle Technology (Micromeritics, Norcross, 1997)

    Google Scholar 

  41. S. Sokolov, E. Ortel, R. Kraehnert, Mater. Res. Bull. 44, 2222 (2009)

    Article  Google Scholar 

  42. A. Sun, Z. Li, M. Li, G. Xu, Y. Li, P. Cui, Powder Technol. 201, 130 (2010)

    Article  Google Scholar 

  43. S.B. Deshpande, H.S. Potdar, Y.B. Khollam, K.R. Patil, R. Pasricha, N.E. Jacob, Mater. Chem. Phys. 97, 207 (2006)

    Article  Google Scholar 

  44. M.S. Mohajerani, M. Mazloumi, A. Lak, A. Kajbafvala, S. Zanganeh, S.K. Sadrnezhaad, J. Cryst. Growth 310, 3621 (2008)

    Article  Google Scholar 

  45. D. PradipMukherjee, S. KumarDas, Ceram. Int. 39, 571 (2013)

    Article  Google Scholar 

  46. Q. Zhou, Z. Zhang, T. Chen, X. Guo, S. Zhou, Colloids Surf. B Biointerfaces 86, 45 (2011)

    Article  Google Scholar 

  47. K.M. Parida, N. Sahu, J. Mol Cat. A Chem. 287, 151 (2008)

    Article  Google Scholar 

  48. A.E. Shalan, M.M. Rashad, Y. Yu, M. Lira-Cantú, M.S.A. Abdel-Mottaleb, Electrochim. Acta 89, 469 (2013)

    Article  Google Scholar 

  49. A.H. Yuwono, Y. Zhang, J. Wang, X.H. Zhang, H. Fan, W. Ji, Chem. Mater. 18, 5876 (2006)

    Article  Google Scholar 

  50. G. Collazzo, S. Jahn, N. Carreño, E. Foletto, Braz. J. Chem. Eng. 28, 265 (2011)

    Article  Google Scholar 

  51. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemannt, Chem. Rev. 95, 69 (1995)

    Article  Google Scholar 

  52. S.J.F. Herregods, M. Mertens, K. Van Havenbergh, G. Van Tendeloo, P. Cool, A. Buekenhoudt, V. Meynen, J. Colloid Interface Sci. 391, 36 (2013)

    Article  Google Scholar 

  53. T. Hongo, A. Yamazaki, Mic. Mes. Mater. 142, 316 (2011)

    Article  Google Scholar 

  54. M. Grätzel, J. Photochem. Photobio. C Photochem. Rev. 4, 145 (2003)

    Article  Google Scholar 

  55. V. Feigenbrugel, C. Loew, S.L. Calvé, P. Mirabel, J. Photochem. Photobiol. A Chem. 174, 76 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

M. R. Mohammadi wishes to thank the financial support from Iran National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Mohammadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozaffari, N., Mohammadi, M.R. & Faghihi Sani, M.A. Development of block copolymer-templated crack-free mesoporous anatase-TiO2 film: tailoring sol–gel and EISA processing parameters and photovoltaic characteristics. J Mater Sci: Mater Electron 26, 1543–1553 (2015). https://doi.org/10.1007/s10854-014-2573-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2573-z

Keywords

Navigation