Skip to main content
Log in

Enhancement of efficiency in dye-sensitized solar cell using spray deposited Ga doped ZnO thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Gallium doped Zinc Oxide thin films have been deposited by means of spray pyrolysis technique onto preheated glass substrates using Gallium (III) acetyl acetonate as precursor for Ga ions. The effect of Ga doping on the structural, morphological and optical properties of sprayed Ga doped ZnO thin films were investigated using X-ray diffraction, Scanning electron microscopy, and Optical absorption techniques. The films are crystalline with hexagonal (wurtzite) crystal structure with preferential orientation along (002) plane. From SEM studies it is confirmed that the grains were distributed randomly. The average transparency in the visible range was found to be 70 %. The Gallium doped ZnO thin film has been deposited above the Indium Tin Oxide (ITO) coated glass substrate. Bromophenol and platinum coated ITO substrate were used as the photo sensitizer and counter electrode, respectively. The efficiency of the obtained DSSC measured by sensitizing for 12 h was found to be η = 0.44, 0.50 and 0.60 % for every increase in doping of Gallium concentrations which can be utilized for the application of Dye-Sensitized Solar Cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.V.M. Otakwa, J. Simiyu, S.M. Waita, J.M. Mwabora, Int. J. Renew. Energy Res. 2, 3 (2012)

    Google Scholar 

  2. B. O’Regan, M. Gratzel, Nature 353, 737–739 (1991)

    Article  Google Scholar 

  3. K.G. Deepa, P. Lekha, S. Sindhu, Sol. Energy 86, 326–330 (2012)

    Article  Google Scholar 

  4. A. de Souza Goncalves, M.R. Davolos, N. Masaki, S. Yanagida, A. Morandeira, J.R. Durrant, J.N. Freitas, A.F. Nogueira, Dalton Transactions, vol. 11 (Royal Soc Chemistry, Cambridge, 2008), pp. 1487–1491

    Google Scholar 

  5. D. Guo, J. Wang, C. Cui, P. Li, X. Zhong, F. Wang, S. Yuan, K. Zhang, Y. Zhou, Sol. Energy 95, 237–245 (2013)

    Article  Google Scholar 

  6. Q. Peng, Y. Qin, Nanowires Implement. Appl. 157 (2011)

  7. A. Alkahlout, N. Al Dahoudi, I. Grobelsek, M. Jilavi, P.W. de Oliveira, J. Mater. 235638 (2014)

  8. K. Subbulakshmi, R. Pandeeswari, B.G. Jeyaprakash, Superlattices Microstruct. 65, 219–226 (2014)

    Article  Google Scholar 

  9. M.C. Jeong, B.Y. Oh, M.H. Ham, J.M. Myoung, Appl. Phys. Lett. 88, 202105 (2006)

    Article  Google Scholar 

  10. K. Lee, J.H. Kim, S. Im, C.S. Kim, H.K. Baik, Appl. Phys. Lett. 89, 133507 (2006)

    Article  Google Scholar 

  11. S. Snega, K. Ravichandran, N. Jabena Begum, K. Thirumurugan, J. Mater. Sci. Mater. Electron. 24, 135–141 (2013)

    Article  Google Scholar 

  12. M.-C. Jun, J.-H. Koh, J. Electr. Eng. Technol. 8, 163–167 (2013)

    Article  Google Scholar 

  13. K. Vijayalakshmi, K. Karthick, P. Dhivya, M. Sridharan, Ceram. Int. 39, 5681–5687 (2013)

    Article  Google Scholar 

  14. K. Keis, E. Magnusson, H. Lindstorm, S.-E. Lindquistand, A. Hagfeldt, Sol. Energy Mater. Sol. Cells 73, 51–58 (2002)

    Article  Google Scholar 

  15. J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H.M. Ng, W. Jiang, E.L. Garfunkel, Appl. Phys. Lett. 83, 3401–3403 (2003)

    Article  Google Scholar 

  16. T. Prasada Rao, M.C. Santhosh Kumar, J. Cryst. Process. Technol. 2, 72–79 (2012)

    Article  Google Scholar 

  17. K. Yim, H.W. Kim, C. Lee, Mater. Sci. Technol. 23, 108–112 (2007)

    Article  Google Scholar 

  18. O. Nakagawaea, Y. Kishimoto, H. Seto, Y. Koshido, Y. Yoshino, T. Makino, Appl. Phys. Lett. 89, 091904 (2006)

    Article  Google Scholar 

  19. S. Palimar, K.V. Bangera, G.K. Shivakumar, Semiconductors 46, 12 (2012)

    Article  Google Scholar 

  20. T. Prasada Rao, M.C. Santhosh Kumar, Appl. Surf. Sci. 255, 4579–4584 (2009)

    Article  Google Scholar 

  21. V. Craciun, J. Elders, J. Gardeniers, G.E. Ia, W. Boyd, Appl. Phys. Lett. 65, 23 (1994)

    Google Scholar 

  22. S.H. Jeong, S. Kho, D. Jung, S.B. Lee, J.H. Boo, Surf. Coat. Technol. 174–175, 187–192 (2003)

    Article  Google Scholar 

  23. Chien-Yie Tsay, Kai-Shiung Fan, Sih-Han Chen, Chia-Hao Tsai, J. Alloy. Compd. 495, 126–130 (2010)

    Article  Google Scholar 

  24. K. Ravichandran, P.V. Rajkumar, B. Sakthivel, K. Swaminathan, L. Chinnappa, Ceram. Int. 40, 12375–12382 (2014)

    Article  Google Scholar 

  25. B.G. Jeyaprakash, K. Kesavan, R. Ashok Kumar, S. Mohan, A. Amalarani, J. Am. Sci. 6(2), 75–79 (2010)

    Google Scholar 

  26. A. Amala Rani, S. Ernest, Superlattices Microstruct. (2014). doi:10.1016/j.spmi.2014.07.048

    Google Scholar 

  27. A.R. Babar, P.R. Deshamukh, R.J. Deokate, D. Haranath, C.H. Bhosale, K.Y. Rajpure, J. Phys. D Appl. Phys. 41, 6 (2008)

    Article  Google Scholar 

  28. C. Amutha, A. Dhanalakshmi, B. Lawrence, K. Kulathuran, V. Ramadas, B. Natarajan, Progress Nanotechnol. Nanomater. 3, 13–18 (2014)

    Google Scholar 

  29. J. Rodríguez-Báez, A. Maldonado, G. Torres-Delgado, R. Castanedo-Pérez, M. de la L. Olvera, Mater. Lett. 60, 1594–1598 (2006)

    Article  Google Scholar 

  30. E. Burstein, Phys. Rev. 93, 632 (1954)

    Article  Google Scholar 

  31. Y. Imai, A. Watanabe, J. Mater. Sci. Mater. Electron. 15, 743–749 (2004)

    Article  Google Scholar 

  32. N.-O. Saelim, R. Magaraphan, T. Sreethawong, Ceram. Int. 37, 659–663 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Amala Rani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amala Rani, A., Ernest, S. Enhancement of efficiency in dye-sensitized solar cell using spray deposited Ga doped ZnO thin films. J Mater Sci: Mater Electron 26, 762–768 (2015). https://doi.org/10.1007/s10854-014-2461-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2461-6

Keywords

Navigation