Skip to main content

Advertisement

Log in

A novel strategy to synthesize Gd2O2S:Eu3+ luminescent nanobelts via inheriting the morphology of precursor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Gd2O3:Eu3+ nanobelts were fabricated by calcination of the electrospun PVP/[Gd(NO3)3 + Eu(NO3)3] composite nanobelts. For the first time, Gd2O2S:Eu3+ nanobelts were successfully prepared via inheriting the morphology and sulfurization of the as-prepared Gd2O3:Eu3+ nanobelts precursor using sulfur powders as sulfur source by a double-crucible method we newly proposed. X-ray diffraction analysis indicated that Gd2O2S:Eu3+ nanobelts were pure hexagonal in structure with space group P\( \bar{3} \) m1. Scanning electron microscope analysis results showed that the width and thickness of the Gd2O2S:Eu3+ nanobelts were ca. 2.1 μm and 129 nm, respectively. Under the excitation of 330-nm ultraviolet light, Gd2O2S:Eu3+ nanobelts emitted red emissions of predominant peaks at 628 and 618 nm which were attributed to the 5D0 → 7F2 energy levels transitions of the Eu3+ ions. It was found that the optimum doping molar concentration of Eu3+ ions in Gd2O2S:Eu3+ nanobelts was 5 %. Possible formation and sulfurization mechanisms of Gd2O2S:Eu3+ nanobelts were also proposed. This new sulfurization technique is of great importance, not only can inherit the morphology of rare earth oxides, but also can fabricate pure-phase rare earth oxysulfides at low temperature compared with conventional sulfurization method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Mikami, A. Oshiyama, Phys. Rev. B 57, 8939–8944 (1998)

    Article  Google Scholar 

  2. T. Jǖstel, H. Nikol, C. Ronda, Angew. Chem. Int. Ed. 37, 3084–3103 (1998)

    Article  Google Scholar 

  3. J.B. Lian, X.D. Sun, J.G. Li, X.D. Li, Opt. Mater. 33, 596–600 (2011)

    Article  Google Scholar 

  4. D. Cavouras, I. Kandarakis, C.D. Nomicos, A. Bakas, G.S. Panayiotakis, Radiat. Meas. 32, 5–13 (2000)

    Article  Google Scholar 

  5. Y. Jiang, Y. Wu, Y. Xie, Y.T. Qian, J. Am. Ceram. Soc. 83, 2628–2630 (2000)

    Article  Google Scholar 

  6. C.L. Lo, J.G. Duh, B.S. Chiou, C.C. Peng, L. Ozawa, Mater. Chem. Phys. 71, 179–189 (2001)

    Article  Google Scholar 

  7. T.M. Chou, S. Mylswamy, R.S. Liu, S.Z. Chuang, Solid State Commun. 136, 205–209 (2005)

    Article  Google Scholar 

  8. X.X. Luo, W.H. Cao, M.M. Xing, J. Rare Earth. 24, 20–24 (2006)

    Article  Google Scholar 

  9. Q.L. Dai, H.W. Song, M.Y. Wang, X. Bai, B. Dong, R.F. Qin, X.S. Qu, H. Zhang, J. Phys. Chem. C 112, 19399–19404 (2008)

    Article  Google Scholar 

  10. Y.Y. Li, S.H. Cai, D.C. Dai, J. Rare Earth. 14, 16–20 (1996)

    Google Scholar 

  11. H. Kim, D.W. Hang, J.S. Lee, J. Am. Chem. Soc. 126, 8912–8913 (2004)

    Article  Google Scholar 

  12. Y.H. Song, H.P. You, Y.J. Huang, M. Yang, Y.H. Zheng, L.H. Zhang, N. Guo, Inorg. Chem. 49, 11499–11504 (2010)

    Article  Google Scholar 

  13. W.Y. Li, Y.L. Liu, P.F. Ai, X.B. Chen, J. Rare Earth. 27, 895–899 (2009)

    Article  Google Scholar 

  14. J. Thirumalai, R. Chandramohan, T.A. Vijayan, R.M. Somasundaram, Mater. Res. Bull. 46, 285–291 (2011)

    Article  Google Scholar 

  15. F. Wang, B. Yang, J.C. Zhang, Y.N. Dai, W.H. Ma, J. Lumin. 130, 473–477 (2010)

    Article  Google Scholar 

  16. A.M. Pires, O.A. Serra, J. Davolos, Alloys Compd. 374, 181–184 (2004)

    Article  Google Scholar 

  17. P.F. Ai, W.Y. Li, L.Y. Xiao, Y.D. Li, H.J. Wang, Y.L. Liu, Ceram. Int. 36, 2169–2174 (2010)

    Article  Google Scholar 

  18. Y. Fu, W.H. Cao, Y. Peng, X.X. Luo, M.M. Xing, J. Mater. Sci. 45, 6556–6561 (2010)

    Article  Google Scholar 

  19. Q.L. Ma, W.S. Yu, X.T. Dong, J.X. Wang, G.X. Liu, Nanoscale 6, 2945–2952 (2014)

    Article  Google Scholar 

  20. Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, ChemPlusChem 79, 290–297 (2014)

    Article  Google Scholar 

  21. W.W. Ma, W.S. Yu, X.T. Dong, J.X. Wang, G.X. Liu, Chem. Eng. J. 244, 531–539 (2014)

    Article  Google Scholar 

  22. W.W. Ma, X.T. Dong , J.X. Wang , W.S. Yu , G.X. Liu, J. Mater. Sci.: Mater. El. 25, 1657–1663 (2014)

  23. W.S. Yu, Q.L. Kong, J.X. Wang, X.T. Dong, G.X. Liu, J. Mater. Sci.: Mater. El. 25, 46–56 (2014)

  24. S. Wu, X.T. Dong, J.X. Wang, Q.L. Kong, W.S. Yu, G.X. Liu, J. Mater. Sci.: Mater. El. 25, 1053–1062 (2014)

  25. S.J. Sheng, Q.L. Ma, X.T. Dong, N. Lv, J.X. Wang, W.S. Yu, G.X. Liu, J. Mater. Sci.: Mater. El. 25, 2279–2286 (2014)

  26. H.Y. Wang, Y. Yang, Y. Wang, Y.Y. Zhao, X. Li, C. Wang, J. Nanosci. Nanotechnol. 9, 1522–1525 (2009)

    Article  Google Scholar 

  27. J.X. Wang, H.R. Che, X.T. Dong, L. Liu, G.X. Liu, Acta. Optica Sinica 30, 473–479 (2010)

    Article  Google Scholar 

  28. Y. Liu, J.X. Wang, X.T. Dong, G.X. Liu, Chem. J. Chin. Univ. 31, 1291–1296 (2010)

    Google Scholar 

  29. X.T. Dong, L. Lui, J.X. Wang, G.X. Liu, Chem. J. Chin. Univ. 31, 20–25 (2010)

    Google Scholar 

  30. Q.Z. Cui, X.T. Dong, J.X. Wang, M. Li, J. Rare Earth. 26, 664–669 (2008)

    Article  Google Scholar 

  31. L. Xu, H.W. Song, B. Dong, Y. Wang, X. Bai, G.L. Wang, Q. Liu, J. Phys. Chem. C 113, 9609–9615 (2009)

    Article  Google Scholar 

  32. A.A. Kader, M.M. Elkholy, Chem. Mater. Sci. 1, 95–99 (1990)

    Google Scholar 

  33. T.W. Chou, S. Mylswamy, R.S. Liu, S.Z. Chuang, Solid State Commun. 136, 205–209 (2005)

    Article  Google Scholar 

  34. J. Thirumalai, R. Chandramohan, R. Divakar, E. Mohandas, M. Sekar, P. Parameswaran, Nanotechnology 19, 455–458 (2008)

    Article  Google Scholar 

  35. G. Blasse, Chem. Mater. Sci. 26, 43–79 (1976)

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NSFC 50972020, 51072026), Specialized Research Fund for the Doctoral Program of Higher Education (20102216110002, 20112216120003), the Science and Technology Development Planning Project of Jilin Province (Grant Nos. 20130101001JC, 20070402), the Science and Technology Research Project of the Education Department of Jilin Province during the eleventh five-year plan period (Under Grant No. 2010JYT01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Tian or Xiangting Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Yang, L., Ma, Q. et al. A novel strategy to synthesize Gd2O2S:Eu3+ luminescent nanobelts via inheriting the morphology of precursor. J Mater Sci: Mater Electron 25, 5388–5394 (2014). https://doi.org/10.1007/s10854-014-2317-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2317-0

Keywords

Navigation