Skip to main content
Log in

Effect of polyethylenimine on electrophoretic deposition of TiO2 nanoparticles in alternating current electric field

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, AC electric field was applied to deposit TiO2 nanoparticles dispersed in Acetone on coplanar electrodes. The experiments were performed in presence and absence of an additive, polyethylenimine (PEI), at frequencies of 1 Hz and 10 kHz. It was revealed that deposition pattern changed dramatically by addition of PEI which makes particles to fill the inter electrode gap at both frequencies. When PEI is added, particles show different behavior. While they tend to fill the gap randomly at 1 Hz, they form chainlike pattern at 10 kHz. Chain formation of particles in the gap indicates presence of dielectrophoretic (DEP) forces. The ability of particles to polarize in both suspensions at 10 kHz are calculated by a multi-shell model in order to find DEP force. According to this model, the polarizability for particles in the suspension with PEI is more than the other, so DEP forces applied more strongly on them and promotes chain formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Ammam, Electrophoretic deposition under modulated electric fields: a review. RSC Adv. 2, 7633–7646 (2012)

    Article  Google Scholar 

  2. I. Corni, M.P. Ryan, A.R. Boccaccini, Electrophoretic deposition: from traditional ceramics to nanotechnology. J. Eur. Ceram. Soc. 28, 1353–1367 (2008)

    Article  Google Scholar 

  3. B. Neirinck, J. Fransaer, O.V.D. Biest, J. Vleugels, Aqueous electrophoretic deposition in asymmetric AC electric fields (AC–EPD). Electrochem. Commun. 11, 57–60 (2009)

    Article  Google Scholar 

  4. A. Chávez-Valdez, M. Herrmann, A. Boccaccini, Alternating current electrophoretic deposition (EPD) of TiO2 nanoparticles in aqueous suspensions. J. Colloid Interface Sci. 375, 102–105 (2012)

    Article  Google Scholar 

  5. L. Besra, T. Uchikoshi, T.S. Suzuki, Y. Sakka, Bubble-free aqueous electrophoretic deposition (EPD) by pulse-potential application. J. Am. Ceram. Soc. 91, 3154–3159 (2008)

    Article  Google Scholar 

  6. A. Nold, R. Clasen, Bubble-free electrophoretic shaping from aqueous suspension with micro point-electrode. J. Eur. Ceram. Soc. 30, 2971–2975 (2010)

    Article  Google Scholar 

  7. V. Ozhukil Kollath, Q. Chen, R. Closset, J. Luyten, K. Traina, S. Mullens, A.R. Boccaccini, R. Cloots, AC vs. DC electrophoretic deposition of hydroxyapatite on titanium. J. Eur. Ceram. Soc. 33, 2715–2721 (2013)

    Article  Google Scholar 

  8. T. Yoshioka, A. Chávez-Valdez, J.A. Roether, D.W. Schubert, A.R. Boccaccini, AC electrophoretic deposition of organic–inorganic composite coatings. J. Colloid Interface Sci. 392, 167–171 (2013)

    Article  Google Scholar 

  9. R. Riahifar, B. Raissi, E. Marzbanrad, C. Zamani, Effect of parameters on deposition pattern of ceramic nanoparticles in non-uniform AC electric field. J. Mater. Sci.: Mater. Electron. 22, 40–46 (2011)

    Google Scholar 

  10. A.S. Dukhin, S.S. Dukhin, Aperiodic capillary electrophoresis method using an alternating current electric field for separation of macromolecules. Electrophoresis 26, 2149–2153 (2005)

    Article  Google Scholar 

  11. S. Ghashghaie, E. Marzbanrad, B. Raissi, C. Zamani, R. Riahifar, Effect of low frequency electric field parameters on chain formation of ZnO nanoparticles for gas sensing applications. J. Am. Ceram. Soc. 95, 1843–1850 (2012)

    Article  Google Scholar 

  12. R. Riahifar, E. Marzbanrad, B. Raissi, C. Zamani, M. Kazemzad, A. Aghaei, Sorting ZnO particles of different shapes with low frequency AC electric fields. Mater. Lett. 65, 632–635 (2011)

    Article  Google Scholar 

  13. R. Riahifar, B. Raissi, E. Marzbanrad, C. Zamani, AC electrophoresis, a new technique for deposition of ceramic nanoparticles; introduction, application and mechanism. Key Eng. Mater. 507, 41–45 (2012)

    Article  Google Scholar 

  14. J. Esmaeilzadeh, S. Ghashghaie, B. Raissi, E. Marzbanrad, C. Zamani, R. Riahifar, Dispersant-assisted low frequency electrophoretically deposited TiO2 nanoparticles in non-aqueous suspensions for gas sensing applications. Ceram. Int. 38, 5613–5620 (2012)

    Article  Google Scholar 

  15. S. Mathur, B.M. Moudgil, Adsorption mechanism (s) of poly (ethylene oxide) on oxide surfaces. J. Colloid Interface Sci. 196, 92–98 (1997)

    Article  Google Scholar 

  16. X. Zhu, T. Uchikoshi, T.S. Suzuki, Y. Sakka, Effect of polyethylenimine on hydrolysis and dispersion properties of aqueous Si3N4 suspensions. J. Am. Ceram. Soc. 90, 797–804 (2007)

    Article  Google Scholar 

  17. X. Zhu, F. Tang, T.S. Suzuki, Y. Sakka, Role of the initial degree of ionization of polyethylenimine in the dispersion of silicon carbide nanoparticles. J. Am. Ceram. Soc. 86, 189–191 (2003)

    Article  Google Scholar 

  18. F. Tang, T. Uchikoshi, K. Ozawa, Y. Sakka, Effect of polyethylenimine on the dispersion and electrophoretic deposition of nano-sized titania aqueous suspensions. J. Eur. Ceram. Soc. 26, 1555–1560 (2006)

    Article  Google Scholar 

  19. J. Esmaeilzadeh, S. Ghashghaie, B.R. Dehkordi, R. Riahifar, Role of the electric field affected zone (EFAZ) on the electrophoretic deposition of TiO2 nanoparticles under symmetric low-frequency AC electric fields. J. Phys. Chem. B 117, 1660–1663 (2012)

    Article  Google Scholar 

  20. P.C. Hiemenz, R. Rajagopalan, Principles of Colloid and Surface Chemistry (Marcel Dekker Inc., New York, 1997)

    Google Scholar 

  21. R. Riahifar, E. Marzbanrad, B.R. Dehkordi, C. Zamani, Role of substrate potential on filling the gap between two planar parallel electrodes in electrophoretic deposition. Mater. Lett. 64, 559–561 (2010)

    Article  Google Scholar 

  22. B. Techaumnat, S. Hamada, T. Takuma, Electric field behavior near a zero-angle contact point in the presence of surface conductivity, IEEE Trans. Dielectr. Electr. Insul. 9(4) (2002)

  23. H. Morgan, N.G. Green, AC Electrokinetics: Colloids and Nanoparticles (Research Studies Press, Baldock, Hertfordshire, 2003)

  24. T.B. Jones, Electromechanics of Particles (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  25. K.V.I.S. Kaler, T.B. Jones, R. Paul, Low-frequency micromotion of DEP-levitated plant protoplasts, I. J. Colloid Interface Sci. 175, 108–117 (1995)

    Article  Google Scholar 

  26. T.N. Tombs, T.B. Jones, Effect of moisture on the dielectrophoretic spectra of glass spheres, IEEE Trans. Ind Appl. 29(2) (1993)

  27. D.R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2004)

    Google Scholar 

  28. F. Fahrenberger, Z. Xu, C. Holm, Simulation of electric double layers around charged colloids in aqueous solution of variable permittivity, eprint arXiv:1312.5443 (2013)

  29. M. Hughes, Nanoelectromechanics in Engineering and Biology (CRC Press, Boca Raton, FL, 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Riahifar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navidirad, M., Raissi, B., Riahifar, R. et al. Effect of polyethylenimine on electrophoretic deposition of TiO2 nanoparticles in alternating current electric field. J Mater Sci: Mater Electron 25, 5041–5050 (2014). https://doi.org/10.1007/s10854-014-2269-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2269-4

Keywords

Navigation