Skip to main content
Log in

Different TiO2 nanotubes for back illuminated dye sensitized solar cell: fabrication, characterization and electrochemical impedance properties of DSSCs

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work we reported the fabrication of different TiO2 nanotube arrays (TiO2 NTs) by anodization method. When used in dye-sensitized solar cells, the TiO2 NTs prepared in the two-step anodization process (2-step TiO2 NTs) showed better efficiency than those of TiO2 NTs prepared in one step anodization process (1-step TiO2 NTs). The 2-step TiO2 NTs show a remarkable efficiency of 1.56 %. This is higher than those of TiO2 NTs prepared in one step anodization process. Electrochemical impedance spectroscopy has been performed for qualitative analysis of charge transport process in dye-sensitized solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. O’Regan, M. Grätzel, Nature 353, 737 (1991)

    Article  Google Scholar 

  2. M. Grätzel, Nature 414, 338 (2001)

    Article  Google Scholar 

  3. M. Grätzel, Inorg. Chem. 44, 6841 (2005)

    Article  Google Scholar 

  4. N. Liu, K. Lee, P. Schmuki, Electrochem. Commun. 15, 1 (2012)

    Article  Google Scholar 

  5. Z.H. Zhang, Y. Yuan, G.Y. Shi, Y.J. Fang, L.H. Liang, H.C. Ding, Environ. Sci. Technol. 41, 6259 (2007)

    Article  Google Scholar 

  6. G.K. Mor, O.K. Varghese, M. Paulose, C.A. Grimes, Adv. Funct. Mater. 15, 1291 (2005)

    Article  Google Scholar 

  7. Z.Y. Liu, B. Pesic, K.S. Raja, R.R. Rangaraju, M. Misra, Int. J. Hydrogen Energy 34, 3250 (2009)

    Article  Google Scholar 

  8. S.G. Yang, Y.Z. Liu, C. Sun, Appl. Catal. A 301, 284 (2006)

    Article  Google Scholar 

  9. X. Wu, Q.Z. Jiang, Z.F. Ma, M. Fu, W.F. Shangguan, Solid State Commun. 136, 513 (2005)

    Article  Google Scholar 

  10. H.H. Ou, S.L. Lo, Sep. Purif. Technol. 58, 179 (2007)

    Article  Google Scholar 

  11. S.I. Na, S.S. Kim, W.K. Hong, J.W. Park, J. Jo, Y.C. Nah, Electrochim. Acta 53, 2560 (2007)

    Article  Google Scholar 

  12. V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M.Y. Perrin, M. Aucouturier, Surf. Interface Anal. 27, 629 (1999)

    Article  Google Scholar 

  13. O.K. Varghese, M. Paulose, K. Shankar, G.K. Mor, C.A. Grimes, J. Nanosci. Nanotechnol. 5, 1158 (2005)

    Article  Google Scholar 

  14. M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, J. Phys. Chem. B. 110, 16179 (2006)

    Article  Google Scholar 

  15. S.P. Albu, D. Kim, P. Schmuki, Angew. Chem. Int. Ed. Engl. 47, 1916 (2008)

    Article  Google Scholar 

  16. S.Q. Li, G.M. Zhang, D.Z. Guo, L.G. Yu, W. Zhang, J. Phys. Chem. C 113, 12759 (2009)

    Article  Google Scholar 

  17. Y. Shin, S. Lee, Nano Lett. 8, 3171 (2008)

    Article  Google Scholar 

  18. Z. Zhang, MdF Hossain, T. Takahashi, Int. J. Hydrogen Energy 35, 8528 (2010)

    Article  Google Scholar 

  19. S. So, K. Lee, P. Schmuki, Phys. Status Solidi RRL 6, 169 (2012)

    Article  Google Scholar 

  20. J.H. Park, Chem. Commun. 25, 2867 (2008)

    Article  Google Scholar 

  21. A. Jaroenworaluck, D. Regonini, C.R. Bowen, R. Stevens, D. Allsopp, J. Mater. Sci. 42, 6729 (2007)

    Article  Google Scholar 

  22. T. Stergiopoulos, A. Ghicov, V. Likodimos, D.S. Tsoukleris, J. Kunze, P. Schmuki, P. Falaras, Nanotechnology 19, 235602 (2008)

    Article  Google Scholar 

  23. S. Kathirvel, H.S. Chen, C. Su, H.H. Wang, C.Y. Li, W.R. Li, J. Nano Mat. 2013, 1 (2013)

    Article  Google Scholar 

  24. A. Mazzarolo, K. Lee, A. Vicenzo, P. Schmuki, Electrochem. Commun. 22, 162 (2012)

    Article  Google Scholar 

  25. B.C. ORegan, J.R. Durrant, P.M. Sommeling, N.J. Bakker, J. Phys. Chem. C. 111, 14001 (2007)

  26. M. Berginc, U. Opara Krasovec, M. Jankovec, M. Topic, Sol. Energy Mater. Sol Cells. 91, 821 (2007)

  27. A.N.M. Green, E. Palomares, S.A. Haque, J.M. Kroon, J.R. Durrant, J. Phys. Chem. B. 109, 12525 (2005)

    Article  Google Scholar 

  28. N. Kislov, S.S. Srinivasan, Y. Emirov, E.K. Stefanakos, Mater. Sci. Eng. B 153, 70 (2008)

    Article  Google Scholar 

  29. F. Yakuphanoglu, J. Alloys. Compd. 507, 184 (2010)

    Article  Google Scholar 

  30. Y. Lee, M. Kang, Mater. Chem. Phys. 122, 284 (2010)

    Article  Google Scholar 

  31. Q. Wang, J.E. Moser, M. Grätzel, J. Phys. Chem. B. 109, 14945 (2005)

    Article  Google Scholar 

  32. N. Papageorgiou, W.F. Maier, M. Grätzel, J. Electrochem. Soc. 144, 876 (1997)

    Article  Google Scholar 

  33. J. Bisquert, J. Phys. Chem. B. 106, 325 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Mohsen Momeni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momeni, M.M., Hosseini, M.G. Different TiO2 nanotubes for back illuminated dye sensitized solar cell: fabrication, characterization and electrochemical impedance properties of DSSCs. J Mater Sci: Mater Electron 25, 5027–5034 (2014). https://doi.org/10.1007/s10854-014-2267-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2267-6

Keywords

Navigation