Skip to main content

Advertisement

Log in

Enhanced energy-storage properties of SrTiO3 doped (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 lead-free antiferroelectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The energy-storage properties of SrTiO3-doped (15, 20, 25, and 30 mol%) 0.80Bi1/2Na1/2TiO3–0.20Bi1/2K1/2TiO3 lead-free antiferroelectric ceramics were investigated by two-step sintering method. The ceramics with higher SrTiO3 content had smaller grain sizes and a more homogeneous distribution. About 25 mol% SrTiO3 doping induced antiferroelectric properties, showing a typical double hysteresis loops, accompanied by a large energy density. The first sintering temperature of the ceramics had main impact on the relative density, and the high relative density possessed large external breakdown strength. The optimum electrical performances with a low remanent polarization (Pr = 1.9 μC/cm2), a low coercive field (Ec = 1.7 kV/cm) and a large energy density (W = 0.97 J/cm3) at 10 Hz were obtained at 1,190 °C for a SrTiO3 content of 25 mol%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Gao, X.L. Dong, C.L. Mao, F. Cao, G.S. Wang, Solid State Commun. 152, 1670–1672 (2012)

    Article  Google Scholar 

  2. X.F. Chen, H.L. Zhang, F. Cao, G.S. Wang, X.L. Dong, Y. Gu, H.L. He, Y.S. Liu, J. Appl. Phys. 106, 034105 (2009)

    Article  Google Scholar 

  3. Y. Liu, Z. Xu, Y.J. Feng, J. Adv. Dielectr. 2, 1250006 (2012)

    Article  Google Scholar 

  4. E. Sawaguchi, H. Maniwa, S. Hoshino, Phys. Rev. 83, 1078 (1951)

    Article  Google Scholar 

  5. G. Shirane, E. Sawaguchi, Y. Takagi, Phys. Rev. 84, 476–481 (1951)

    Article  Google Scholar 

  6. X.H. Dai, Z. Xu, J.F. Li, J. Mater. Res. 11, 626–638 (1996)

    Article  Google Scholar 

  7. A.P. Barranco, D.A. Hall, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 1785–1791 (2009)

    Article  Google Scholar 

  8. Q. Wang, J. Chen, L.L. Fan, L.J. Liu, L. Fang, X.R. Xing, J. Am. Ceram. Soc. 96, 1171–1175 (2013)

    Article  Google Scholar 

  9. G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, N.N. Krainik, Sov. Phys. Solid State (Engl. Transl.) 2, 2651–2654 (1961)

    Google Scholar 

  10. W.F. Bai, J.G. Hao, F. Fu, W. Li, B. Shen, J.W. Zhai, Mater. Lett. 97, 137–140 (2013)

    Article  Google Scholar 

  11. Y.M. Li, W. Chen, J. Zhou, Q. Xu, H.J. Sun, R.X. Xu, Mater. Sci. Eng. B 112, 5–9 (2004)

    Article  Google Scholar 

  12. K. Pham, A. Hussain, C.W. Ahn, I.W. Kim, S.J. Jeong, J. Lee, Mater. Lett. 64, 2219–2222 (2010)

    Article  Google Scholar 

  13. T. Takenaka, K. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30, 2236–2239 (1991)

    Article  Google Scholar 

  14. W. Zhao, H.P. Zhou, Y.K. Yan, D. Liu, Key Eng. Mater. 368, 1908–1910 (2008)

    Article  Google Scholar 

  15. Z.P. Yang, B. Liu, L.L. Wei, Y.T. Hou, Mater. Res. Bull. 43, 81–89 (2008)

    Article  Google Scholar 

  16. B.J. Chu, D.R. Chen, G.R. Li, Q.R. Yin, J. Eur. Ceram. Soc. 22, 2115–2121 (2002)

    Article  Google Scholar 

  17. Y. Bai, G.P. Zheng, S.Q. Shi, Mater. Res. Bull. 46, 1866–1869 (2011)

    Article  Google Scholar 

  18. K. Sakata, Y. Masuda, Ferroelectrics 7, 347–349 (1974)

    Article  Google Scholar 

  19. F. Gao, X.L. Dong, C.L. Mao, W. Liu, H.L. Zhang, L.H. Yang, F. Cao, G.H. Wang, J. Am. Ceram. Soc. 94, 4382–4386 (2011)

    Article  Google Scholar 

  20. J.E. Daniels, W. Jo, J. Rodel, V. Honkimaki, J.L. Jones, Acta Mater. 58, 2103–2111 (2010)

    Article  Google Scholar 

  21. F. Fu, J.W. Zhai, Z.K. Xu, W.F. Bai, X. Yao, Solid State Sci. 13, 934–937 (2011)

    Article  Google Scholar 

  22. R. Dittmer, E.M. Anton, W. Jo, H. Simons, J.E. Daniels, M. Hoffman, J. Pokorny, I.M. Reaney, J. Rodel, J. Am. Ceram. Soc. 95, 3519–3524 (2012)

    Article  Google Scholar 

  23. K. Seifert, W. Jo, J. Rödel, J. Am. Ceram. Soc. 93, 1392–1396 (2010)

    Google Scholar 

  24. T.T. Zou, X.H. Wang, W. Zhao, L.P. Li, J. Am. Ceram. Soc. 91, 121–126 (2008)

    Article  Google Scholar 

  25. J.X. Ding, Y.F. Liu, Y.N. Lu, H. Qian, H. Gao, H. Chen, C.J. Ma, Mater. Lett. 114, 107–110 (2014)

    Article  Google Scholar 

  26. K. Wang, A. Hussain, W. Jo, J. Rodel, J. Am. Ceram. Soc. 95, 2241–2247 (2012)

    Article  Google Scholar 

  27. T.M. Correia, M. McMillen, M.K. Rokosz, P.M. Weaver, J.M. Gregg, G. Viola, M.G. Cain, J. Am. Ceram. Soc. 96, 2699–2702 (2013)

    Article  Google Scholar 

  28. Y.R. Zhang, J.F. Li, B.P. Zhang, C.E. Peng, J. Appl. Phys. 103, 074109 (2008)

    Article  Google Scholar 

  29. D. Lin, J. Am. Ceram. Soc. 93, 806–813 (2009)

    Article  Google Scholar 

  30. X.M. Chen, X.X. Gong, T.N. Li, Y. He, P. Liu, J. Alloys Compd. 507, 535–541 (2010)

    Article  Google Scholar 

  31. H.Y. Ma, X.M. Chen, J. Wang, K.T. Huo, H.L. Lian, P. Liu, Ceram. Int. 39, 3721–3729 (2013)

    Article  Google Scholar 

  32. Z. Song, H.X. Liu, S.J. Zhang, Z.J. Wang, Y.T. Shi, H. Hao, M.H. Cao, J. Eur. Ceram. Soc. 34, 1209–1217 (2014)

    Article  Google Scholar 

  33. W.R. Buessem, L.E. Cross, A.K. Goswami, J. Am. Ceram. Soc. 49, 33–36 (1966)

    Article  Google Scholar 

  34. Y. Huan, X.H. Wang, J. Fang, L.T. Li, J. Am. Ceram. Soc. 96, 3369–3371 (2013)

    Article  Google Scholar 

  35. Y. Huan, X.H. Wang, J. Fang, L.T. Li, J. Eur. Ceram. Soc. 34, 1445–1448 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Major Program for the Natural Scientific Research of Jiangsu Higher Education Institutions (12KJA430002) and Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT), IRT1146. And the authors acknowledge the financial support from Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunfei Liu or Yinong Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Liu, Y., Lu, Y. et al. Enhanced energy-storage properties of SrTiO3 doped (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 lead-free antiferroelectric ceramics. J Mater Sci: Mater Electron 25, 4632–4637 (2014). https://doi.org/10.1007/s10854-014-2215-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2215-5

Keywords

Navigation