Skip to main content

Advertisement

Log in

Enhanced optoelectronics properties of europium(III) complexes with β-diketone and nitrogen heterocyclic ligands

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Preparation and photoluminescence behavior of six new europium complexes with β-diketone 1-(2-hydroxy phenyl)-3-phenylpropane-1,3-dione (HPPP) and bathophenanthroline (batho), 2,2′-bipyridyl (bipy), 2,2′-biquinoline (biq), neocuproin (neo) and 1,10-phenanthroline (phen) are reported in solid state. The ligand (HPPP) and complexes Eu(HPPP)3·H2O (1), Eu(HPPP)3·phen (2), Eu(HPPP)3·batho (3), Eu(HPPP)3·bipy (4), Eu(HPPP)3·biq (5) and Eu(HPPP)3·neo (6) were characterized by means of elemental analysis, infrared spectroscopy, proton nuclear magnetic resonance (1H-NMR). The optical properties, thermal stability and crystalline nature were investigated by photoluminescence spectroscopy, thermogravimetric analysis and XRD respectively. The emission spectra show narrow intense emission band of central europium (III) metal ion that arise from the high intense 5D0 → 7F0 transition. The introduction of ancillary ligands like batho, bipy, biq, neo, phen enlarged the π-conjugation system in complexes as a result higher luminescence intensity, longer life time (τ) and higher quantum efficiency (η) observed in europium ternary complexes in comparison to Eu(HPPP)3·H2O (1). Based on the emission spectra, the luminescence decay curve was measured which indicated that the transfer of energy from HPPP ligand to the europium metal is more efficient in complexes 26 than complex 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.I. Weissman, J. Chem. Phys. 10, 214 (1942)

    Article  Google Scholar 

  2. S.G. Liu, P. He, H.H. Wang, J.X. Shi, M.L. Gong, Mater. Chem. Phys. 116, 654 (2009)

    Article  Google Scholar 

  3. S.G. Liu, M.L. Gong, S. Wang, X.M. Tan, Spectrochim. Acta Part A 74, 731 (2009)

    Article  Google Scholar 

  4. S.G. Liu, P. He, H.H. Wang, J.X. Shi, M.L. Gong, J. Lumin. 130, 855 (2010)

    Article  Google Scholar 

  5. H.H. Wang, P. He, H.G. Yan, M.L. Gong, Sens. Actuators B 156, 6 (2011)

    Article  Google Scholar 

  6. H. Tsukube, M. Hosokubo, M. Wada, S. Shinoda, H. Tamiaki, Inorg. Chem. 40, 582 (2001)

    Google Scholar 

  7. Y.J. Fu, T.K.S. Wong, Y.K. Yan, X. Hu, J. Alloys Compd. 358, 235 (2003)

    Article  Google Scholar 

  8. K. Kuriki, Y. Koike, Y. Okamoto, Chem. Rev. 102, 2347 (2002)

    Article  Google Scholar 

  9. M.R. Robinson, M.B. O’Regan, G.C. Bazan, Chem. Commun. 17, 1645 (2000)

    Article  Google Scholar 

  10. D. Parker, P.K. Senanayake, J.A.G. Williams, J. Chem. Soc. Perkin Trans. 2, 2129 (1998)

    Article  Google Scholar 

  11. C.W. Tang, S.A. Vanslyke, Appl. Phys. Lett. 51, 913 (1987)

    Article  Google Scholar 

  12. J. Kido, K. Nagai, Y. Okamoto, J. Alloys Compd. 192, 30 (1993)

    Article  Google Scholar 

  13. N. Takada, T. Tsutsui, S. Saito, Jpn. J. Appl. Phys. 33, 863 (1994)

    Article  Google Scholar 

  14. B.S. Panigrahi, Spectrochim. Acta Part A 56(7), 1337 (2000)

    Article  Google Scholar 

  15. R. Kumar, J.K. Makrandi, I. Singh, S.P. Khatkar, J. Lumin. 128, 1297 (2008)

    Article  Google Scholar 

  16. X.H. Zhao, K.L. Huang, F.P. Jiao, Z.J. Li, X.H. Peng, Rare Met. 25(2), 144 (2006)

    Article  Google Scholar 

  17. K. Binnemans, K.A. Gschneidner Jr, J.C.G. Bunzil, Rare-Earth Beta-Diketonates, in Handbook on the physics and chemistry of Rare Earths chapter 225, ed. by V.K. Pecharsky (Elsevier, Amsterdam, 2005)

    Google Scholar 

  18. Y.F. Yuan, T. Cadinaels, K. Lunstroot, K. Van Hecke, L. Van Meervelt, C. GÖlrller-Walrand, K. Binnemans, P. Nockemann, Inorg. Chem. 46, 5302 (2007)

    Article  Google Scholar 

  19. F.F. Chen, Z.Q. Bian, Z.W. Liu, D.B. Nie, Z.Q. Chen, C.H. Huang, Inorg. Chem. 47, 2507 (2008)

    Article  Google Scholar 

  20. A. Kumar, J.K. Makrandi, Heteroletters 2(3), 271 (2012)

    Google Scholar 

  21. D. Wang, C. Zheng, L. Fan, J. Zheng, X. Wei, Synt. Met. 162, 2063 (2012)

    Article  Google Scholar 

  22. P.N. Verma, H.D. Juneja, Int. J. Chemtech. Res. 4(3), 1000 (2012)

    Google Scholar 

  23. D. Wang, Y. Pi, C. Zheng, L. Fan, Y. Hu, X. Wei, J. Alloy. Compd. 574, 54 (2013)

    Article  Google Scholar 

  24. V. Divya, S. Biju, R.L. Varma, M.L.P. Reddy, J. Mater. Chem. 20, 5220 (2010)

    Article  Google Scholar 

  25. H.F. Li, P.F. Yan, P. Chen, Y. Wang, H. Xu, G.M. Li, Dalton Trans. 41, 900 (2012)

    Article  Google Scholar 

  26. N. Sabbatini, M. Guardigli, J.M. Lehn, Coord. Chem. Rev. 123, 201 (1993)

    Article  Google Scholar 

  27. H.F. Brito, O.L. Malta, L.R. Souza, J.F.S. Menezes, C.A.A. Carvalho, J. Non-Cryst. Solid 247, 129 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

The financial support for this work from Council of Scientific and Industrial Research (CSIR) of India (09/382 (0155)/2012-EMR-I) is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Khatkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bala, M., Kumar, S., Boora, P. et al. Enhanced optoelectronics properties of europium(III) complexes with β-diketone and nitrogen heterocyclic ligands. J Mater Sci: Mater Electron 25, 2850–2856 (2014). https://doi.org/10.1007/s10854-014-1951-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-1951-x

Keywords

Navigation