Skip to main content
Log in

Low temperature sintering and dielectric properties of Li2ZnTi3O8–TiO2 composite ceramics doped with CaO–B2O3–SiO2 glass

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effects of CaO–B2O3–SiO2 (CBS) glass addition on the sintering temperature and dielectric properties of Li2ZnTi3O8–TiO2 (LZT) composite ceramics have been investigated. Due to the compensating effect of rutile TiO2f ≈ +450 ppm/ °C), the temperature coefficient of resonant frequency (τf) for Li2ZnTi3O8 + 4 wt% TiO2 with biphasic structure was adjusted to a value near zero. The pure LZT ceramics were usually sintered at high temperature of about 1,160 °C. It was found in our experiment that a small amount of CBS glass additives could effectively lower the sintering temperature of LZT ceramics to 900 °C. With increasing the content of CBS glass, both of dielectric constant (εr) and quality factor (Q × f) value decreased. Typically, the 1 wt% CBS glass added Li2ZnTi3O8 + 4 wt% TiO2 ceramic sintered at 900 °C for 4 h exhibited good microwave dielectric properties of εr = 26.9, Q × f = 23,563 GHz and τf = −1.5 ppm/ °C, which made it promising for low temperature co-fired ceramics technology application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.T. Sebastian, Dielectric Materials for Wireless Communications (Elsevier Publishers, Oxford, U.K., 2008)

    Google Scholar 

  2. A. Manan, Y. Iqbal, I. Qazi, J. Mater. Sci. 46, 3415–3423 (2011)

    Article  Google Scholar 

  3. L. Fang, D.J. Chu, C.C. Li, H.F. Zhou, Z. Yang, J. Am. Ceram. Soc. 94, 524 (2011)

    Article  Google Scholar 

  4. Y.C. Lee, W.H. Lee, F.S. Shieu, J. Eur. Ceram. Soc. 25, 3459–3468 (2005)

    Article  Google Scholar 

  5. H.F. Zhou, X.B. Liu, X.L. Chen, L. Fang, Mater. Res. Bull. 47, 1278–1280 (2012)

    Article  Google Scholar 

  6. X.B. Liu, H.F. Zhou, X.L. Chen, L. Fang, J. Mater. Sci. Mater. Electron. 23, 640–644 (2012)

    Article  Google Scholar 

  7. M.Z. Hou, G.H. Chen, Y. Bao, Y. Yang, C.L. Yuan, J. Mater. Sci. Mater. Electron. 23, 1722–1727 (2012)

    Article  Google Scholar 

  8. G.H. Chen, J. Liu, X.Q. Li, H.R. Xu, M.H. Jiang, C.R. Zhou, Bull. Mater. Sci. 34, 1233–1236 (2011)

    Article  Google Scholar 

  9. D.K. Yim, J.R. Kim, D.W. Kim, K.S. Hong, J. Eur. Ceram. Soc. 27, 3053 (2007)

    Article  Google Scholar 

  10. H.I. Hsiang, T.H. Chen, J. Alloys Compd. 467, 485 (2009)

    Article  Google Scholar 

  11. S. George, M.T. Sebastian, J. Am. Ceram. Soc. 93, 2164–2166 (2010)

    Article  Google Scholar 

  12. S. George, M.T. Sebastian, J. Am. Ceram. Soc. 30, 2585–2592 (2010)

    Article  Google Scholar 

  13. H.T. Armaki, E. Taheri-Nassaj, M. Bari, J. Alloy. Compd. 581, 757–761 (2013)

    Article  Google Scholar 

  14. C.Y. Liu, B.G. Tsai, M.H. Weng, S.J. Huang, Int. J. Appl. Ceram. Tec 10, E49–E56 (2013)

    Article  Google Scholar 

  15. G.H. Chen, M.Z. Hou, Y. Bao, C.L. Yuan, C.R. Zhou, H.R. Xu, Int. J. Appl. Ceram. Tec 10, 492–501 (2013)

    Article  Google Scholar 

  16. H.K. Li, W.Z. Lu, W. Lei, Mater. Lett. 71, 148–150 (2012)

    Article  Google Scholar 

  17. G.H. Chen, J. Liu, X.Q. Li, H.R. Xu, M.H. Jiang, C.R. Zhou, Bull. Mater. Sci. 34, 1233–1236 (2011)

    Article  Google Scholar 

  18. B. Li, S.R. Zhang, Y. Yuan, X.H. Zhou, L.C. Xiang, J. Mater. Sci. 44, 4993–4998 (2009)

    Article  Google Scholar 

  19. H.K. Zhu, W. Shen, Y. Jin, H.Q. Zhou, J. Mater. Sci. Mater. Electron. 24, 1090–1094 (2012)

    Article  Google Scholar 

  20. P. Gao, H.M. Ji, Q.Q. Jia, X.L. Li, J. Alloy. Compd. 527, 90–95 (2012)

    Article  Google Scholar 

  21. H.K. Zhu, W. Shen, Y. Jin, H.Q. Zhou, X.D. Shen, W.J. Quan, J. Mater. Sci. Mater. Electron. 24, 3546–3550 (2013)

    Article  Google Scholar 

  22. H.K. Zhu, H.Q. Zhou, M. Liu, Mater. Res. Bull. 44, 674–677 (2009)

    Article  Google Scholar 

  23. M.Z. Hou, G.H. Chen, Y. Bao, Y. Yang, C.L. Yuan, J. Mater. Sci. Mater. Electron. 23, 1722–1727 (2012)

    Article  Google Scholar 

  24. D.L. Corker, R.W. Whatmore, E. Ringgaard, W.W. Wolny, J. Eur. Ceram. Soc. 20, 2039 (2000)

    Article  Google Scholar 

  25. L. Fang, Y. Tang, D.J. Chu, H.F. Zhou, H. Zhang, X.L. Chen, Q.W. Liu, J. Mater. Sci. Mater. Electron. 23, 478–483 (2012)

    Article  Google Scholar 

  26. C.L. Huang, R.J. Lin, J.F. Tzeng, Mater. Chem. Phys. 97, 256 (2006)

    Article  Google Scholar 

  27. M. Guo, S.P. Gong, G. Dou, D.X. Zhou, J. Alloys, Compd. 509, 5988 (2011)

    Article  Google Scholar 

  28. P.V. Bijumon, M.T. Sebastian, Mater. Sci. Eng. B 123, 31 (2005)

    Article  Google Scholar 

  29. H.K. Zhu, H.Q. Zhou, M. Liu, P.F. Wei, G.J. Xu, G. Ning, J. Mater. Sci. Mater. Electron. 20, 1135–1139 (2009)

    Article  Google Scholar 

  30. C.C. Chiang, S.F. Wang, Y.R. Wang, Y.F. Fu, J. Alloys Compd. 461, 612–616 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, J., Tang, B. et al. Low temperature sintering and dielectric properties of Li2ZnTi3O8–TiO2 composite ceramics doped with CaO–B2O3–SiO2 glass. J Mater Sci: Mater Electron 25, 2780–2785 (2014). https://doi.org/10.1007/s10854-014-1942-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-1942-y

Keywords

Navigation