Skip to main content

Advertisement

Log in

Growth of ZnO nanorods on TiO2 nanoparticles films and their application to the electrode of dye-sensitized solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A ZnO nanorods (NRs)/TiO2 nanoparticles (NPs) film has been prepared by electrochemical deposition of ZnO NRs growth on P25 TiO2 NPs film surfaces. It was found that ZnO NRs/TiO2 NPs could significantly improve the efficiency of dye-sensitized solar cells owing to its relatively enhanced light-scattering capability and efficient charge transport efficiency. The overall energy-conversion efficiency (η) of 3.48 % was achieved by the formation of ZnO NRs/TiO2 NPs film, which is 33 % higher than that formed by TiO2 NPs alone (η = 2.62 %). The charge recombination behavior of cells was investigated by electrochemical impedance spectra, and the results showed that ZnO NRs/TiO2 NPs film has the longer electron lifetime than TiO2 NPs alone, which could facilitate the reduction of recombination processes and thus would promote the photocatalysis and solar cell performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. O’Regan, M. Grätzel, Nature 353, 737–740 (1991)

    Article  Google Scholar 

  2. K.D. Benkstein, N. Kopidakis, J. van de Lagemaat, A.J. Frank, J. Phys. Chem. B 107(31), 7759–7761 (2003)

    Article  Google Scholar 

  3. J. Bisquert, F. Fabregat-Santiago, I. Mora-Sero, G. Garcia-Belmonte, E.M. Barea, E. Palomares, Inorg. Chim. Acta 361, 684–698 (2008)

    Article  Google Scholar 

  4. A.J. Frank, N. Kopidakis, J. van de Lagemaat, Coord. Chem. Rev. 248, 1165–1179 (2004)

    Article  Google Scholar 

  5. J. van de Lagemaat, N.G. Park, A.J. Frank, J. Phys. Chem. B 104(9), 2044–2052 (2000)

    Article  Google Scholar 

  6. M. Wang, Y. Wang, J. Li, Chem. Commun. 47(40), 11246–11248 (2011)

    Article  Google Scholar 

  7. F. Gu, L. Gai, W. Shao, C. Li, L. Schmidt-Mende, Chem. Commun. 47(29), 8400–8402 (2011)

    Article  Google Scholar 

  8. S.H. Ko, D. Lee, H.W. Kang, K.H. Nam, J.Y. Yeo, S.J. Hong, C.P. Grigoropoulos, H.J. Sung, Nano Lett. 11(2), 666–671 (2011)

    Article  Google Scholar 

  9. D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, W.C. Harsch, Solid State Commun. 105(6), 399–401 (1998)

    Article  Google Scholar 

  10. S. Fujihara, Y. Ogawa, A. Kasai, Chem. Mater. 16(15), 2965–2968 (2004)

    Article  Google Scholar 

  11. S. Ueno, S. Fujihara, Eur. J. Inorg. Chem. 2010(14), 2165–2171 (2010)

    Article  Google Scholar 

  12. H. Zhu, C.X. Shan, B. Yao, B.H. Li, J.Y. Zhang, D.X. Zhao, D.Z. Shen, X.W. Fan, J. Phys. Chem. C 112(51), 20546–20548 (2008)

    Article  Google Scholar 

  13. H.Y. Yang, S.F. Yu, S.P. Lau, X. Zhang, D.D. Sun, G. Jun, Small 5(20), 2260–2264 (2009)

    Article  Google Scholar 

  14. Y. Wu, T. Tamaki, T. Volotinen, L. Belova, K.V. Rao, J. Phys. Chem. Lett. 1, 89–92 (2010)

    Article  Google Scholar 

  15. M. Zhou, H. Zhu, X. Wang, Y. Xu, Y. Tao, S. Hark, X. Xiao, Q. Li, Chem. Mater. 22(1), 64–69 (2010)

    Article  Google Scholar 

  16. M. Wang, C. Huang, Y. Cao, Q. Yu, Z. Deng, Y. Liu, Z. Huang, J. Huang, Q. Huang, W. Guo, J. Liang, J. Phys. D Appl. Phys. 42, 155104 (2009)

    Article  Google Scholar 

  17. N. Wang, X. Li, Y. Wang, Y. Hou, X. Zou, G. Chen, Mater. Lett. 62(21–22), 3691–3693 (2008)

    Article  Google Scholar 

  18. N. Wang, C. Sun, Y. Zhao, S. Zhou, P. Chena, L. Jiang, J. Mater. Chem. 18, 3909–3911 (2008)

    Article  Google Scholar 

  19. M. Agrawal, S. Gupta, A. Pich, N.E. Zafeiropoulos, M. Stamm, Chem. Mater. 21(21), 5343–5348 (2009)

    Article  Google Scholar 

  20. S. Panigrahi, D. Basak, Nanoscale 3(5), 2336–2341 (2011)

    Article  Google Scholar 

  21. D. Wu, Z. Gao, F. Xu, Z. Shi, W. Tao, K. Jiang, CrystEngComm 14(23), 7934–7941 (2012)

    Article  Google Scholar 

  22. Y.-L. Xie, Z.-X. Li, Z.-G. Xu, H.-L. Zhang, Electrochem. Commun. 13(8), 788–791 (2011)

    Article  Google Scholar 

  23. T. Pauporté, E. Jouanno, F. Pellé, B. Viana, P. Aschehoug, J. Phys. Chem. C 113(24), 10422–10431 (2009)

    Article  Google Scholar 

  24. S. Hao, J. Wu, Y. Huang, J. Lin, Sol. Energy 80(2), 209–214 (2006)

    Article  Google Scholar 

  25. H. Chang, H.-T. Su, W.-A. Chen, K.D. Huang, S.-H. Chien, S.-L. Chen, C.-C. Chen, Sol. Energy 84(1), 130–136 (2010)

    Article  Google Scholar 

  26. X. Lü, F. Huang, X. Mou, Y. Wang, F. Xu, Adv. Mater. 22(33), 3719–3722 (2010)

    Article  Google Scholar 

  27. L.S. Zhang, K.H. Wong, Z.G. Chen, J.C. Yu, J.C. Zhao, C. Hu, C.Y. Chan, P.K. Wong, Appl. Catal. A 363(1–2), 221–229 (2009)

    Article  Google Scholar 

  28. F. Peng, H. Wang, H. Yu, S. Chen, Mater. Res. Bull. 41, 2123–2131 (2006)

    Article  Google Scholar 

  29. A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C 1(1), 1–21 (2000)

    Article  Google Scholar 

  30. Q. Zhang, L. Gao, J. Guo, Appl. Catal. B 26(3), 207–215 (2000)

    Article  Google Scholar 

  31. H. Zhang, J. Banfield, J. Phys. Chem. B 104, 3481–3487 (2000)

    Article  Google Scholar 

  32. Y.Z. Li, W. Xie, X.L. Hu, G.F. Shen, X. Zhou, Y. Xiang, X.J. Zhao, P.F. Fang, Langmuir 26, 591–597 (2010)

    Article  Google Scholar 

  33. L. Lin, Y. Yang, L. Men, X. Wang, D. He, Y. Chai, B. Zhao, S. Ghoshroy, Q. Tang, Nanoscale 5(2), 588–593 (2013)

    Article  Google Scholar 

  34. Y.-L. Xie, Z.-X. Li, H. Xu, K.-F. Xie, Z.-G. Xu, H.-L. Zhang, Electrochem. Commun. 17, 34–37 (2012)

    Article  Google Scholar 

  35. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nat. Mater. 4, 455–459 (2005)

    Article  Google Scholar 

  36. C. Xu, P.H. Shin, L. Cao, J. Wu, D. Gao, Chem. Mater. 22(1), 143–148 (2010)

    Article  Google Scholar 

  37. H. Wang, Z. Chen, Y.H. Leung, C. Luan, C. Liu, Y. Tang, C. Yan, W. Zhang, J.A. Zapien, L. Bello, S.T. Lee, Appl. Phys. Lett. 96, 263104 (2010)

    Article  Google Scholar 

  38. B. Liu, E.S. Aydil, J. Am. Chem. Soc. 131(11), 3985–3990 (2009)

    Article  Google Scholar 

  39. M.K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Grätzel, J. Am. Chem. Soc. 127(48), 16835–16847 (2005)

    Article  Google Scholar 

  40. Q.F. Zhang, C.S. Dandeneau, X.Y. Zhou, G.Z. Cao, Adv. Mater. 21(41), 4087–4108 (2009)

    Article  Google Scholar 

  41. R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther, Electrochim. Acta 47, 4213–4225 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the financial support from the Natural Science Foundation of Qinghai Province (2013-Z-924Q), and Chunhui Project of the Ministry of Education (Z2012109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Long Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, YL., Lin, PC., Hu, SQ. et al. Growth of ZnO nanorods on TiO2 nanoparticles films and their application to the electrode of dye-sensitized solar cells. J Mater Sci: Mater Electron 25, 2665–2670 (2014). https://doi.org/10.1007/s10854-014-1926-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-1926-y

Keywords

Navigation