Skip to main content
Log in

Ferromagnetic and weak superparamagnetic like behavior of Ni-doped ZnS nanocrystals synthesized by reflux method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this report we have studied the magnetism induced in the undoped and Ni-doped ZnS nanocrystals synthesized via low temperature reflux method. The average diameter of the undoped and Ni-doped nanoparticles is ~3 nm as revealed from transmission electron microscopy and X-ray diffraction (XRD) studies. From XRD studies, the structure of Ni-doped nanocrystals was observed as cubic zinc blende with lattice parameter, a = 0.539 nm. The band gap of the undoped and Ni-doped ZnS nanocrystals, analyzed with UV–visible spectroscopy, was found to be blue shifted as compared to the bulk counterpart. Quenching in photoluminescence spectra was observed at higher Ni concentrations as compared to undoped counterpart. The induced magnetization as analyzed from vibrating samples magnetometer indicated a weak superparamagnetic like behavior in 1 % Ni-doped ZnS nanocrystals, whereas; at 5 and 10 % Ni-doping concentrations, ferromagnetic behavior is indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: a spin-based electronics vision for the future. Science 294, 1488 (2001)

    Article  Google Scholar 

  2. J.K. Furdyna, Dilute magnetic semiconductors. J. Appl. Phys. 64, R29 (1988)

    Article  Google Scholar 

  3. M.L. Steigerwald, L.E. Brus, Semiconductor crystallites: a class of large molecules. Acc. Chem. Res. 23, 183–186 (1990)

    Article  Google Scholar 

  4. D. Kim, K.D. Min, J. Lee, J.H. Park, J.H. Chun, Influences of surface capping on particle size and optical characteristics of ZnS:Cu nanocrystals. Mater. Sci. Eng. B 131, 13 (2006)

    Article  Google Scholar 

  5. Y. Wang, N. Herron, Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem. 95, 525 (1991)

    Article  Google Scholar 

  6. V.L. Colvin, M.C. Schlamp, A.P. Alivisatos, Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354 (1994)

    Article  Google Scholar 

  7. R.N. Bharagava, Doped nanocrystalline materials—physics and applications. J. Lumin. 70, 85–94 (1996)

    Article  Google Scholar 

  8. S. Kumar, S. Kumar, N.K. Verma, S.K. Chakravarti, Room temperature ferromagnetism in solvothermally synthesized pure CdSe and CdSe:Ni nanorods. J. Mater. Sci. Mater. Electron. 22, 1456–1459 (2011)

    Article  Google Scholar 

  9. S. Kumar, S. Kumar, S. Jain, N.K. Verma, Magnetic and structural characterization of transition metal co-doped CdS nanoparticles. Appl. Nanosci. 2, 127–131 (2012)

    Article  Google Scholar 

  10. S. Delikanli, S. He, Y. Qin, P. Zhang, H. Zeng, H. Zhang, M. Swihart, Room temperature ferromagnetism in Mn-doped CdS nanorods. Appl. Phys. Lett. 93, 132501 (2008)

    Article  Google Scholar 

  11. R. Bhargava, D. Gallagher, T. Welker, Doped nanocrystals of semiconductors—a new class of luminescent materials. J. Lumin. 60, 275–280 (1994)

    Article  Google Scholar 

  12. S. Bhattacharya, D. Chakravorty, Electrical and magnetic properties of cold compacted iron-doped zinc sulfide nanoparticles synthesized by wet chemical method. Chem. Phys. Lett. 444, 319–323 (2007)

    Article  Google Scholar 

  13. Z.H. Wang, D.Y. Geng, D. Li, Z.D. Zhang, Cluster spin-glasslike behavior in nanoparticles of diluted magnetic semiconductors ZnS:Mn. J. Mater. Res. 22, 2376–2383 (2007)

    Article  Google Scholar 

  14. I. Sarkar, M. Sanyal, S. Kar, S. Biswas, S. Banerjee, S. Chaudhuri, S. Takeyama, H. Mino, F. Komori, Ferromagnetism in zinc sulfide nanocrystals: dependence on manganese concentration. Phys. Rev. B 75, 224409 (2007)

    Article  Google Scholar 

  15. S. Sambasivam, D.P. Joseph, J.G. Lin, C. Venkateswaran, Synthesis and characterization of thiophenol passivated Fe-doped ZnS nanoparticles. Mater. Sci. Eng. B 150, 125–129 (2008)

    Article  Google Scholar 

  16. S. Sambasivam, D.P. Joseph, J.G. Lin, C. Venkateswaran, Doping induced magnetism in Co-doped ZnS nanoparticles. J. Solid State Chem. 182, 2598–2601 (2009)

    Article  Google Scholar 

  17. N. Eryong, L. Donglai, Z. Yunsen, B. Xue, Y. Liang, J. Yong, J. Zhifeng, S. Xiaosong, Photoluminescence and magnetic properties of Fe-doped ZnS nano-particles synthesized by chemical co-precipitation. Appl. Surf. Sci. 257, 8762–8766 (2011)

    Article  Google Scholar 

  18. D.A. Reddy, G. Murali, R. Vijayalakshmi, B. Reddy, Room-temperature ferromagnetism in EDTA capped Cr-doped ZnS nanoparticles. Appl. Phys. A: Mater. Sci. Process. 105, 119–124 (2011)

    Article  Google Scholar 

  19. S. Kumar, C.L. Chen, C.L. Dong, Y.K. Ho, J.F. Lee, T.S. Chan, R. Thangavel, T.K. Chen, B.H. Mok, S.M. Rao, M.K. Wu, Room temperature ferromagnetism in Ni-doped ZnS nanoparticles. J. Alloy. Compd. 554, 357–362 (2013)

    Article  Google Scholar 

  20. M. Wei, J. Cao, H. Fu, J. Yang, Y. Yan, L. Yang, D. Wang, D. Han, L. Fan, B. Wang, The structure and room temperature ferromagnetism property of the ZnS:Cu2+ nanoparticles. Mater. Sci. Semicond. Process. 16, 928–932 (2013)

    Article  Google Scholar 

  21. Z. Jindal, N.K. Verma, Enhanced luminescence of UV irradiated Zn1−xNixS nanoparticles. Mater. Chem. Phys. 124, 270–273 (2010)

    Article  Google Scholar 

  22. Z. Jindal, N.K. Verma, Photoluminescent properties of ZnS:Mn nanoparticles with in-built surfactant. J. Mater. Sci. 43, 6539–6545 (2008)

    Article  Google Scholar 

  23. G.S. Lotey, Z. Jindal, V. Singhi, N.K. Verma, Structural and photoluminescence properties of Eu-doped ZnS nanoparticles. Mater. Sci. Semicond. Process. 16, 2044–2050 (2013)

    Article  Google Scholar 

  24. Y. Li, C. Cao, Z. Chen, Magnetic and optical properties of Fe-doped ZnS nanoparticles synthesized by microemulsion method. Chem. Phys. Lett. 517, 55–58 (2011)

    Article  Google Scholar 

  25. S. Sambasivam, D.P. Joseph, J.G. Lin, C. Venkateswaran, Doping induced magnetism in Co–ZnS nanoparticles. J. Solid State Chem. 182, 2598–2601 (2009)

    Article  Google Scholar 

  26. N. Saravanan, G.B. Teh, S.Y.P. Yap, K.M. Cheong, Simple synthesis of ZnS nanoparticles in alkaline medium. J. Mater. Sci. Mater. Electron. 19, 1206–1208 (2008)

    Article  Google Scholar 

  27. A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. Lett. 56, 978–982 (1939)

    Google Scholar 

  28. N. Dixit, N. Anasane, M. Chavda, D. Bodas, H.P. Soni, Inducing multiple functionalities in ZnS nanoparticles by doping Ni+2 ions. Mater. Res. Bull. 48, 2259–2267 (2013)

    Article  Google Scholar 

  29. D.P. Norton, M.E. Overberg, S.J. Pearton, K. Pruessner, Ferromagnetism in cobalt-implanted ZnO. Appl. Phys. Lett. 83, 5488 (2003)

    Article  Google Scholar 

  30. J.H. Park, M.G. Kim, H.M. Jang, S. Ryu, Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films. Appl. Phys. Lett. 84, 1338 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Verma, N.K. Ferromagnetic and weak superparamagnetic like behavior of Ni-doped ZnS nanocrystals synthesized by reflux method. J Mater Sci: Mater Electron 25, 1132–1137 (2014). https://doi.org/10.1007/s10854-013-1700-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1700-6

Keywords

Navigation