Skip to main content
Log in

Influence of Co-doping on the structural, optical and magnetic properties of ZnO nanoparticles synthesized using auto-combustion method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, we have interested to understand the influence of cobalt doping on the various properties of ZnO nanoparticles, a series of samples were successfully synthesized using sol–gel auto-combustion method. The effects of Co doping on the structural and optical properties of ZnO:Co nanoparticles were investigated using X-ray diffraction (XRD), scanning electron microscopy, fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible spectroscopy, photoluminescence spectroscopy and vibrating sample magnetometer (VSM). With the sensitivity of the XRD instrument, the structural analyses on the undoped and Co-doped ZnO samples reveal the formation of polycrystalline hexagonal-wurtzite structure without any secondary phase. FTIR spectra confirm the formation of wurtzite structure of ZnO in the samples. The optical absorption spectra showed a red shift in the near band edge which indicates that Co2+ successfully incorporated into the Zn2+ lattice sites. The room temperature PL measurements show a strong UV emission centered at 392 nm (3.16 eV), ascribed to the near-band-edge emissions of ZnO and defect related emissions at 411 nm (violet luminescence), 449 nm (blue luminescence) and 627 nm (orange-red luminescence), respectively. Magnetic study using VSM reveals that all the samples are found to exhibit room temperature ferromagnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001)

    Article  CAS  Google Scholar 

  2. M. Law, L. Greene, J.C. Johnson, R. Saykally, P. Yang, Nat. Mater. 4, 455 (2005)

    Article  CAS  Google Scholar 

  3. X. Wu, A. Yamilov, X. Liu, S. Li, V.P. Dravid, R.P.H. Chang, H. Cao, Appl. Phys. Lett. 85, 3657 (2004)

    Article  CAS  Google Scholar 

  4. T. Minami, H. Nanto, S. Tanaka, Jpn. J. Appl. Phys. 23, 280 (1984)

    Article  CAS  Google Scholar 

  5. N.F. Cooray, K. Kushiya, A. Fujimaki, D. Okumura, M. Sato, M. Ooshita, O. Yamase, Jpn. J. Appl. Phys. 38, 6213 (1999)

    Article  CAS  Google Scholar 

  6. W. Shan, W. Walukiewicz, J.W. Ager, K.M. Yu, Y. Zhang, S.S. Mao, R. Kling, C. Kirchner, A.Waa, Appl. Phys. Lett. 86, 153117/1 (2005)

    Google Scholar 

  7. N. Ohashi, N. Ebisawa, T. Sekiguchi, I. Sakaguchi, Y. Wada, T. Takenaka, H. Haneda, Appl. Phys. Lett. 86, 091902/1 (2005)

    Google Scholar 

  8. T. Dietl, H. Ohno, F. Matsukura, J. Gilbert, D. Ferrand, Science 287, 1019 (2000)

    Article  CAS  Google Scholar 

  9. S. Singh, N. Rama, M. S. Ramachandra Rao, Appl Phys Lett 88, 222111/1 (2006)

  10. M. Sima, I. Enculescu, M. Sima, M. Enache, E. Vasile, J.P. Ansermet, Phys. Status Solidi B 244, 1522 (2007)

    Article  CAS  Google Scholar 

  11. Y.S. Wang, P.J. Thomas, P. Obrien, J. Phys. Chem. B 110, 21412 (2006)

    Article  CAS  Google Scholar 

  12. L.E. Shea, J. Mckittrick, O.A. Lopez, E. Sluzky, J. Am. Ceram. Soc. 79, 3257 (1996)

    Article  CAS  Google Scholar 

  13. R.D. Purohit, B.P. Sharma, K.T. Pillai, A.K. Tyagi, Mater. Res. Bull. 36, 2711 (2001)

    Article  CAS  Google Scholar 

  14. F. Li, K. Hu, J. Li, D. Zhang, G. Chen, J. Nucl. Mater. 300, 82 (2002)

    Article  CAS  Google Scholar 

  15. T. Mimani, K.C. Patil, Mater. Phys. Mech. 4, 134 (2001)

    CAS  Google Scholar 

  16. V.C. Sousa, M.R. Morelli, R.H.G.A. Kiminami, M.S. Castro, J. Mater. Sci. 13, 319 (2002)

    Google Scholar 

  17. K.R. Lee, S. Park, K.W. Lee, J.H. Lee, J. Mater. Sci. Lett. 22, 65 (2003)

    Article  CAS  Google Scholar 

  18. C.R. Lee, H.W. Lee, J.S. Song, W.W. Kim, S. Park, J. Mater. Synth. Proc. 9, 281 (2001)

    Article  CAS  Google Scholar 

  19. B.D. Cullity, Elements of X-ray diffractions (Addison-Wesley, Reading, 1978)

  20. J. Hays, K.M. Reddy, N.Y. Graces, M.H. Engelhard, V. Suttanandan, V. M. Luo, C. Xu, N.C. Giles, C. Wang, S. Thevuthasan, A. Punnoose, J. Phys. Condens. Matter. 19, 266203/1 (2007)

    Google Scholar 

  21. S. Kolesnik, B. Dabrowski, J. Mais J. J. Appl. Phys. 95, 2582 (2004)

    Article  CAS  Google Scholar 

  22. Y. Belghazia, G. Schmerber, S. Colis, J.L. Rehspringer, A. Berrada, A. Dini, J. Magn. Magn. Mater. 310, 2092 (2007)

    Article  Google Scholar 

  23. P.D. Cozzoli, M.L. Curri, A. Agostiano, G. Leo, M. Lomascolo, J. Phys. Chem. B 107, 4756 (2003)

    Article  CAS  Google Scholar 

  24. Y. Xiong, L.Z. Zhang, G.Q. Tang, G.L. Zhang, W.J. Chen, J. Lumin. 110, 17 (2004)

    Article  CAS  Google Scholar 

  25. H.T. Zhang, X.H. Chen, Nanotechnology 16, 2288 (2005)

    Article  CAS  Google Scholar 

  26. S. Li, H. Bi, F. Zhang, Y. Du, X. Jiang, C. Yang, Q. Yu, Y. Zhu, J. Appl. Phys. 95, 7420 (2004)

    Article  CAS  Google Scholar 

  27. N.F. Mott, E.A. Davis, electronic processes in non-crystalline materials (Clarendon Press, Oxford, 1979)

  28. C.N.R. Rao, F.L. Deepak, J. Mater. Chem. 15, 573 (2005)

    Article  CAS  Google Scholar 

  29. R. Janisch, P. Gopal, N.A. Spaldin, J. Phys.: Condens. Matter 17, R657 (2005)

    Article  CAS  Google Scholar 

  30. S. Singh, M.S. Ramachandra Rao, Phys. Rev. B 80, 045210/1 (2009)

    Google Scholar 

  31. Y.Z. Yoo, T. Fukumura, Z.W. Jin, K. Hasegawa, M. Kawasaki, P. Ahmet, T. Chikyow, H. Koinuma, J. Appl. Phys. 90, 4246 (2001)

    Article  CAS  Google Scholar 

  32. J.J. Wu, W.S.C. Liu, M.H. Yang, Appl. Phys. Lett. 85, 1027 (2004)

    Article  CAS  Google Scholar 

  33. M. Boulouddeine, N. Viart, S. Colis, A. Dinia, Chem. Phys. Lett. 397, 73 (2004)

    Article  Google Scholar 

  34. S. Dutta, S. Chattopadhyay, M. Sutradhar, A. Sarkar, M. Chakrabarti, D. Sanyal, D. Jana, J. Phys.: Condens. Matter 19, 236218 (2007)

    Article  Google Scholar 

  35. D. Maouche, P. Ruterana, L. Louail, Phys. Lett. A 365, 231 (2007)

    Article  CAS  Google Scholar 

  36. S.V. Bhat, F.L. Deepak, Solid State Commun. 135, 345 (2005)

    Article  CAS  Google Scholar 

  37. S. Luo, C. Wang, X. Zhou, Q. Shen, L. Zhang, J. Mater. Sci.: Mater. Electron. 23, 1477 (2012)

    Article  CAS  Google Scholar 

  38. S. Maensiri, P. Laokul, S. Phokha, J. Magn. Magn. Mater. 305, 381 (2006)

    Article  CAS  Google Scholar 

  39. M. Bouloudenine, N. Viart, S. Coils, A. Dinia, Appl. Phys. Lett. 87, 052501 (2005)

    Article  Google Scholar 

  40. Y.Z. Peng, T. Liew, W.D. Song, C.W. An, K.L. Teo, T.C.J. Chong, Supercond. Incorp. Novel Magn. 18, 97 (2005)

    Google Scholar 

  41. J. Diouri, J.P. Lascaray, M. El Amrani, Phys. Rev. B 31, 7995 (1985)

    Article  CAS  Google Scholar 

  42. M. Bouloudenine, N. Viart, S. Colis, J. Kortus, A. Dinia, Appl. Phys. Lett. 87, 052501/1 (2005)

    Google Scholar 

  43. C. Li, G. Fang, Q. Fu, F. Su, G. Li, X. Wu, X. Zhao, J. Cryst. Growth 292, 19 (2006)

    Article  CAS  Google Scholar 

  44. Y. Sun, N.G. Ndifor-Angwafor, D.J. Riley, M.N.R. Ashfold, Chem. Phys. Lett. 431, 352 (2006)

    Article  CAS  Google Scholar 

  45. U Ozgur, Ya I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, A. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301(1) (2005)

  46. K. Samanta, P. Bhattacharya, S. Katiyar, Appl. Phys. Lett. 7, 101903/1 (2005)

    Google Scholar 

  47. H. Wang, H.B. Wang, F.J. Yang, Y. Chen, C. Zhang, C.P. Yang, Q. Li, S.P. Wong, Nanotechnology 17, 4312 (2006)

    Article  CAS  Google Scholar 

  48. X.L. Xu, S.P. Lau, J.S. Chen, G.Y. Chen, B.K. Tay, J. Cryst. Growth 223, 201 (2001)

    Article  CAS  Google Scholar 

  49. S. Mahamuni, K. Borgohain, B.S. Bendre, V.J. Leppert, S.H. Risbud, J. Appl. Phys. 85, 2861 (1999)

    Article  CAS  Google Scholar 

  50. B.J. Jin, S. Im, S.Y. Lee, Thin Solid Films 366, 107 (2000)

    Article  CAS  Google Scholar 

  51. P.S. Xu, Y.M. Sun, C.S. Shi, F.Q. Xu, H.B. Pan, Nucl. Instrum. Meth. Phys. Res. B 199, 286 (2003)

    Article  CAS  Google Scholar 

  52. J. Ding, H. Chen, X. Zhao, S. Ma, J. Phys. Chem. Solids 71, 346 (2010)

    Article  CAS  Google Scholar 

  53. K. Vanheusden, W.L. Warren, C.H. Seager, D.K. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983 (1996)

    Article  CAS  Google Scholar 

  54. X.L. Wu, G.G. Siu, C.L. Fu, H.C. Ong, Appl. Phys. Lett. 78, 2285 (2001)

    Article  CAS  Google Scholar 

  55. X. Xiu, X. Wu, H. Cao, R.P.H. Chang, J. Appl. Phys. 95, 3141 (2004)

    Article  Google Scholar 

  56. S.A. Studenikin, N. Golego, M. Cocivera, J. Appl. Phys. 84, 2287 (1998)

    Article  CAS  Google Scholar 

  57. M. Wang, X. Cheng, J. Yang, Appl. Phys. A 96, 783 (2009)

    Google Scholar 

  58. Z.W. Zhao, B.K. Tay, J.S. Chen J S, J.F. Hu, B.C. Lim, G.P. Li, Appl. Phys. Lett. 90, 152502/1 (2007)

  59. M.A. Fox, M.T. Dulay, Chem. Rev. 93, 341 (1993)

    Article  CAS  Google Scholar 

  60. Y. Liu, Q. Fang, M. Wu, Y. Li, Q. Lv, J. Zhou, B. Wang, J. Phys. D 40, 4592 (2007)

    Article  CAS  Google Scholar 

  61. S. Muthukumaran, R. Gopalakrishnan, J. Mater. Sci.: Mater. Electron. 23, 1393 (2012)

    Article  CAS  Google Scholar 

  62. Y.D. Kim, S.L. Cooper, M.V. Klein, B.T. Jonker, Phys. Rev. B 49, 1732 (1994)

    Article  CAS  Google Scholar 

  63. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)

    Article  CAS  Google Scholar 

  64. L. Linsebigler, G. Lu, J.T.Yates. Jr., Chem. Rev. 95, 735 (1995)

  65. W. Baiqi, S. Xu dong, F. Qiang, J. Iqbal, L. Yana, F. Hong gang, Y. Dapeng, Physica E 41, 413 (2009)

    Google Scholar 

  66. Y. Kalyana Lakshmi, K. Srinivas, B. Sreedhar, M. Manivel Raja, M. Vithal, P. Venugopal Reddy, Mater. Chem. Phys. 113, 749 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the central instrumentation facility, Pondicherry University, Puducherry for providing SEM, FTIR, PL, UV–Visible, VSM studies and UGC for funding XRD measurement at Department of physics, Pondicherry University, Puducherry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Elilarassi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elilarassi, R., Chandrasekaran, G. Influence of Co-doping on the structural, optical and magnetic properties of ZnO nanoparticles synthesized using auto-combustion method. J Mater Sci: Mater Electron 24, 96–105 (2013). https://doi.org/10.1007/s10854-012-0893-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0893-4

Keywords

Navigation