Skip to main content
Log in

Invited viewpoint: pathways to low-cost MXene synthesis

  • Invited Viewpoint
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

MXenes, a class of two-dimensional material with exceptional properties, have garnered significant attention for their potential applications in various industries. However, the high production costs associated with MXene synthesis present a substantial barrier to its widespread use. The synthesis methods, risk factors, environmental factors, and most importantly, expensive precursors create a barrier to MXene applications. Numerous review articles on MXene materials have been published. However, this review article aims to provide a comprehensive analysis of potential ways to reduce the cost of these potential materials, which indicates the novelty of this work. The current article aims to provide a review of the synthesis method, risk factors, environmental factors, and, most importantly, how to convert recycled materials as precursors into MXenes and enhance the cost-effectiveness of MXene production. This review found that modified acid etching is the most convenient route for MXene synthesis, preserving the MXene properties while being concerned with risks and environmental factors. Recycled materials (e.g., tires, aluminum scrap, biochar, and activated carbon) can be used to synthesize high-quality MXenes by fine-tuning their contents. We propose a comprehensive approach to reduce the cost of MXenes. This article includes technical challenges and future recommendations for further research on this topic.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Data and code availability

Data will be made available on request. Code availability is not applicable here.

References

  1. Akhtar N et al (2021) Synthesis and characterization of MXene/BiCr2O4 nanocomposite with excellent electrochemical properties. J Mark Res 15:2007–2015. https://doi.org/10.1016/J.JMRT.2021.08.101

    Article  CAS  Google Scholar 

  2. Yuan K, Hao P, Hu X, Zhang J, Zhou Y (2022) Experimental and computational studies on S-decorated Ti3C2 MXene as anode material in Li-ion batteries. J Mater Sci 57(13):7001–7011. https://doi.org/10.1007/S10853-022-06983-6/METRICS

    Article  CAS  Google Scholar 

  3. Yang C, Huang H, He H, Yang L, Jiang Q, Li W (2021) Recent advances in MXene-based nanoarchitectures as electrode materials for future energy generation and conversion applications. Coord Chem Rev 435:213806. https://doi.org/10.1016/J.CCR.2021.213806

    Article  CAS  Google Scholar 

  4. Guo Z, Li Y, Lu Z, Chao Y, Liu W (2022) High-performance MnO2@MXene/carbon nanotube fiber electrodes with internal and external construction for supercapacitors. J Mater Sci 57(5):3613–3628. https://doi.org/10.1007/S10853-021-06840-Y/METRICS

    Article  CAS  Google Scholar 

  5. Idumah CI (2022) Influence of surfaces and interfaces on MXene and MXene hybrid polymeric nanoarchitectures, properties, and applications. J Mater Sci 57(31):14579–14619. https://doi.org/10.1007/S10853-022-07526-9

    Article  CAS  Google Scholar 

  6. Zhan X, Si C, Zhou J, Sun Z (2020) MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz 5(2):235–258. https://doi.org/10.1039/C9NH00571D

    Article  CAS  Google Scholar 

  7. Naguib M, Barsoum MW, Gogotsi Y (2021) Ten years of progress in the synthesis and development of MXenes. Adv Mater 33(39):2103393. https://doi.org/10.1002/ADMA.202103393

    Article  CAS  Google Scholar 

  8. Kewate OJ, Punniyakoti S (2023) Ti3AlC2 MAX phase and Ti3C2TX MXene-based composites towards supercapacitor applications: a comprehensive review of synthesis, recent progress, and challenges. J Energy Storage 72:108501. https://doi.org/10.1016/J.EST.2023.108501

    Article  Google Scholar 

  9. Le PA, Nguyen NT, Nguyen PL, Phung TVB (2023) Minireview on cathodic and anodic exfoliation for recycling spent zinc-carbon batteries to prepare graphene material: advances and outlook of interesting strategies. Energy Fuels. https://doi.org/10.1021/ACS.ENERGYFUELS.3C00838/ASSET/IMAGES/MEDIUM/EF3C00838_0011.GIF

    Article  Google Scholar 

  10. Pabba DP et al (2023) MXene-based nanocomposites for piezoelectric and triboelectric energy harvesting applications. Micromachines 14(6):1273. https://doi.org/10.3390/MI14061273

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen X, He Y, Zhou L (2023) Assessing the energy efficiency potential of a closed-loop supply chain for household durable metal products in China. https://doi.org/10.1080/00207543.2023.2227908

  12. Abu Bakar S et al (2023) A review on catalytic co-pyrolysis of biomass and plastics waste as a thermochemical conversion to produce valuable products. Energies 16(14):5403. https://doi.org/10.3390/EN16145403

    Article  Google Scholar 

  13. Wang X, Liu X, Wen H, Guo K, Brendon H, Liu D (2023) A green, efficient reductive N-formylation of nitro compounds catalyzed by metal-free graphitic carbon nitride supported on activated carbon. Appl Catal B 321:122042. https://doi.org/10.1016/J.APCATB.2022.122042

    Article  CAS  Google Scholar 

  14. Qureshi WA, Haider SNUZ, Naveed A, Ali A, Liu Q, Yang J (2023) Recent progress in the synthesis, characterization and photocatalytic application of energy conversion over single metal atoms decorated graphitic carbon nitride. Int J Hydrog Energy 48(51):19459–19485. https://doi.org/10.1016/J.IJHYDENE.2022.11.181

    Article  CAS  Google Scholar 

  15. Rasid ZAM, Omar MF, Nazeri MFM, A’Ziz MAA, Szota M (2017) Low cost synthesis method of two-dimensional titanium carbide MXene. IOP Conf Ser Mater Sci Eng 209(1):012001. https://doi.org/10.1088/1757-899X/209/1/012001

    Article  Google Scholar 

  16. Li C, Kota S, Hu C, Barsoum MW (2016) On the synthesis of low-cost, titanium-based mxenes. J Ceram Sci Technol 7(3):301–306. https://doi.org/10.4416/JCST2016-00042

    Article  Google Scholar 

  17. Jolly S, Paranthaman MP, Naguib M (2021) Synthesis of Ti3C2Tz MXene from low-cost and environmentally friendly precursors. Mater Today Adv 10:100139. https://doi.org/10.1016/J.MTADV.2021.100139

    Article  CAS  Google Scholar 

  18. Zhu Y et al (2023) Design and synthesis of core–shell porous magnetic nanospindle@poly(3,4-ethylenedioxythiophene)/MXene composite for efficient microwave absorption. J Mater Sci 58(38):15100–15115. https://doi.org/10.1007/S10853-023-08957-8/METRICS

    Article  CAS  Google Scholar 

  19. Kumar JA et al (2022) Methods of synthesis, characteristics, and environmental applications of MXene: a comprehensive review. Chemosphere. https://doi.org/10.1016/J.CHEMOSPHERE.2021.131607

    Article  PubMed  Google Scholar 

  20. Shekhirev M, Shuck CE, Sarycheva A, Gogotsi Y (2021) Characterization of MXenes at every step, from their precursors to single flakes and assembled films. Prog Mater Sci 120:100757. https://doi.org/10.1016/j.pmatsci.2020.100757

    Article  CAS  Google Scholar 

  21. Liang X, Rangom Y, Kwok CY, Pang Q, Nazar LF (2017) Interwoven MXene nanosheet/carbon-nanotube composites as Li–S cathode hosts. Adv Mater 29(3):1603040. https://doi.org/10.1002/ADMA.201603040

    Article  Google Scholar 

  22. Resentera AC, Rosales GD, Esquivel MR, Rodriguez MH (2023) Acid dissolution of LiF/(NH4)3AlF6 mixtures obtained in the fluorination of α-spodumene with NH4HF2: modeling and optimization. Chem Eng Res Des 200:388–395. https://doi.org/10.1016/J.CHERD.2023.10.038

    Article  CAS  Google Scholar 

  23. Cheng Y, Wang L, Li Y, Song Y, Zhang Y (2019) Etching and exfoliation properties of Cr2AlC into Cr2CO2 and the electrocatalytic performances of 2D Cr2CO2 MXene. J Phys Chem C 123:15629–15636. https://doi.org/10.1021/acs.jpcc.9b03120

    Article  CAS  Google Scholar 

  24. Kajiyama S et al (2016) Sodium-ion intercalation mechanism in MXene nanosheets. ACS Nano 10(3):3334–3341. https://doi.org/10.1021/acsnano.5b06958

    Article  CAS  PubMed  Google Scholar 

  25. Feng A et al (2017) Fabrication and thermal stability of NH4HF2-etched Ti3C2 MXene. Ceram Int 43(8):6322–6328. https://doi.org/10.1016/j.ceramint.2017.02.039

    Article  CAS  Google Scholar 

  26. Wang G (2016) Theoretical prediction of the intrinsic half-metallicity in surface-oxygen-passivated Cr2N MXene. J Phys Chem C 120(33):18850–18857. https://doi.org/10.1021/acs.jpcc.6b05224

    Article  CAS  Google Scholar 

  27. Zhou J et al (2016) A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angew Chem Int Edn 55(16):5008–5013. https://doi.org/10.1002/anie.201510432

    Article  CAS  Google Scholar 

  28. Shahzad F, Iqbal A, Kim H, Koo CM (2020) 2D transition metal carbides (MXenes): applications as an electrically conducting material. Adv Mater 32(51):2002159. https://doi.org/10.1002/ADMA.202002159

    Article  CAS  Google Scholar 

  29. Hantanasirisakul K et al (2016) Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Adv Electron Mater. https://doi.org/10.1002/AELM.201600050

    Article  Google Scholar 

  30. Savchuk OA, Carvajal JJ, Massons J, Aguiló M, Díaz F (2016) Determination of photothermal conversion efficiency of graphene and graphene oxide through an integrating sphere method. Carbon NY 103:134–141. https://doi.org/10.1016/J.CARBON.2016.02.075

    Article  CAS  Google Scholar 

  31. Rozmysłowska-Wojciechowska A et al (2020) Engineering of 2D Ti3C2 MXene surface charge and its influence on biological properties. Materials. https://doi.org/10.3390/MA13102347

    Article  PubMed  PubMed Central  Google Scholar 

  32. Firestein KL et al (2020) Young’s modulus and tensile strength of Ti3C2MXene nanosheets as revealed by in situ TEM probing, AFM nanomechanical mapping, and theoretical calculations. Nano Lett 20(8):5900–5908. https://doi.org/10.1021/ACS.NANOLETT.0C01861/SUPPL_FILE/NL0C01861_SI_004.AVI

    Article  CAS  PubMed  Google Scholar 

  33. Liu R, Li W (2018) High-thermal-stability and high-thermal-conductivity Ti3C2Tx MXene/poly(vinyl alcohol) (PVA) composites. https://doi.org/10.1021/acsomega.7b02001

  34. Shuck CE et al (2020) Scalable synthesis of Ti3C2Tx MXene. Adv Eng Mater. https://doi.org/10.1002/ADEM.201901241

    Article  Google Scholar 

  35. Zhang J et al (2020) Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv Mater. https://doi.org/10.1002/ADMA.202001093

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rasid ZAM, Omar MF, Nazeri MFM, A’Ziz MAA, Szota M (2017) Low cost synthesis method of two-dimensional titanium carbide MXene. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/209/1/012001

    Article  Google Scholar 

  37. Abbasi NM et al (2021) Recent advancement for the synthesis of MXene derivatives and their sensing protocol. Adv Mater Technol 6(10):2001197. https://doi.org/10.1002/ADMT.202001197

    Article  CAS  Google Scholar 

  38. Alhabeb M et al (2017) Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater 29(18):7633–7644. https://doi.org/10.1021/ACS.CHEMMATER.7B02847/SUPPL_FILE/CM7B02847_SI_002.MP4

    Article  CAS  Google Scholar 

  39. Zhang T, Li K, Zhu Y (2021) TiAl3–Al porous by reactive synthesis with space holder method. J Mater Res Technol 15:4949–4954. https://doi.org/10.1016/J.JMRT.2021.10.130

    Article  CAS  Google Scholar 

  40. von Treifeldt JE et al (2021) The effect of Ti3AlC2 MAX phase synthetic history on the structure and electrochemical properties of resultant Ti3C2 MXenes. Mater Des 199:109403. https://doi.org/10.1016/J.MATDES.2020.109403

    Article  Google Scholar 

  41. Szuplewska A et al (2019) Multilayered stable 2D nano-sheets of Ti2NTx MXene: synthesis, characterization, and anticancer activity. J Nanobiotechnol 17(1):1–14. https://doi.org/10.1186/S12951-019-0545-4/FIGURES/8

    Article  CAS  Google Scholar 

  42. Zhang P et al (2023) Modified two-step etching method for the synthesis of Ti3C2 MXene with enhanced electrochemical performance. Electrochem Commun 157:107620. https://doi.org/10.1016/J.ELECOM.2023.107620

    Article  CAS  Google Scholar 

  43. Wyatt BC, Rosenkranz A, Anasori B (2021) 2D MXenes: tunable mechanical and tribological properties. Adv Mater. https://doi.org/10.1002/ADMA.202007973

    Article  PubMed  Google Scholar 

  44. Okawa A et al (2023) Gas sensing performance of Nb2CTx synthesized by hydrothermal assisted in-situ HF generation etching method. Discov Mater 3(1):1–11. https://doi.org/10.1007/S43939-023-00048-4

    Article  Google Scholar 

  45. Sun Z et al (2019) Selective lithiation-expansion-microexplosion synthesis of two-dimensional fluoride-free Mxene. ACS Mater Lett 1(6):628–632. https://doi.org/10.1021/ACSMATERIALSLETT.9B00390/SUPPL_FILE/TZ9B00390_SI_002.MP4

    Article  CAS  Google Scholar 

  46. Huang P, Han WQ (2023) Recent advances and perspectives of lewis acidic etching route: an emerging preparation strategy for MXenes. Nano-Micro Lett 15(1):1–49. https://doi.org/10.1007/S40820-023-01039-Z

    Article  Google Scholar 

  47. Wong AJY, Lim KRG, Seh ZW (2022) Fluoride-free synthesis and long-term stabilization of MXenes. J Mater Res 37(22):3988–3997. https://doi.org/10.1557/S43578-022-00680-5/METRICS

    Article  CAS  Google Scholar 

  48. Xiu LY, Wang ZY, Qiu JS (2020) General synthesis of MXene by green etching chemistry of fluoride-free Lewis acidic melts. Rare Met 39(11):1237–1238. https://doi.org/10.1007/S12598-020-01488-0/METRICS

    Article  CAS  Google Scholar 

  49. Liu L et al (2022) Exfoliation and delamination of Ti3C2TxMXene prepared via molten salt etching route. ACS Nano 16(1):111–118. https://doi.org/10.1021/ACSNANO.1C08498/SUPPL_FILE/NN1C08498_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  50. Arole K, Blivin JW, Radovic M, Lutkenhaus JL, Green MJ (2021) Water-dispersible Ti3C2Tz MXene nanosheets by molten salt etching. iScience 24:103403. https://doi.org/10.1016/j.isci.2021.103403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yan M, Yang L, Li C, Zou Y (2019) Preparation of two-dimensional Ti2CTx by Molten fluorinated salt method. J Wuhan Univ Technol Mater Sci Edn 34(2):299–302. https://doi.org/10.1007/S11595-019-2050-X/METRICS

    Article  CAS  Google Scholar 

  52. Sun W et al (2017) Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J Mater Chem A Mater 5(41):21663–21668. https://doi.org/10.1039/C7TA05574A

    Article  CAS  Google Scholar 

  53. Wu M, He Y, Wang L, Xia Q, Zhou A (2020) Synthesis and electrochemical properties of V2C MXene by etching in opened/closed environments. J Adv Ceram 9(6):749–758. https://doi.org/10.1007/S40145-020-0411-8/METRICS

    Article  CAS  Google Scholar 

  54. Yin T et al (2021) Synthesis of Ti3C2Fx MXene with controllable fluorination by electrochemical etching for lithium-ion batteries applications. Ceram Int 47(20):28642–28649. https://doi.org/10.1016/J.CERAMINT.2021.07.023

    Article  CAS  Google Scholar 

  55. Wang D et al (2023) Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes. Science (1979) 379(6638):1242–1247. https://doi.org/10.1126/SCIENCE.ADD9204/SUPPL_FILE/SCIENCE.ADD9204_SM.PDF

    Article  CAS  Google Scholar 

  56. Sang X et al (2016) Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano 10(10):9193–9200. https://doi.org/10.1021/ACSNANO.6B05240/SUPPL_FILE/NN6B05240_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  57. Hantanasirisakul K, Gogotsi Y (2018) Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv Mater 30(52):1804779. https://doi.org/10.1002/ADMA.201804779

    Article  Google Scholar 

  58. Urbankowski P et al (2016) Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 8(22):11385–11391. https://doi.org/10.1039/C6NR02253G

    Article  CAS  PubMed  Google Scholar 

  59. Rahman UU et al (2022) MXenes as emerging materials: synthesis, properties, and applications. Molecules 27(15):4909. https://doi.org/10.3390/MOLECULES27154909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gogotsi Y (2015) Transition metal carbides go 2D. Nat Mater 14(11):1079–1080. https://doi.org/10.1038/nmat4386

    Article  CAS  PubMed  Google Scholar 

  61. Shuck CE et al (2020) Scalable synthesis of Ti3C2Tx MXene. Adv Eng Mater 22(3):1901241. https://doi.org/10.1002/ADEM.201901241

    Article  CAS  Google Scholar 

  62. Nahirniak S, Ray A, Saruhan B (2023) Challenges and future prospects of the MXene-based materials for energy storage applications. Batteries. https://doi.org/10.3390/BATTERIES9020126

    Article  Google Scholar 

  63. Gogotsi Y, Huang Q (2021) MXenes: two-dimensional building blocks for future materials and devices. ACS Nano 15(4):5775–5780. https://doi.org/10.1021/ACSNANO.1C03161/ASSET/IMAGES/MEDIUM/NN1C03161_0003.GIF

    Article  CAS  PubMed  Google Scholar 

  64. Bhat A, Anwer S, Bhat KS, Mohideen MIH, Liao K, Qurashi A (2021) Prospects challenges and stability of 2D MXenes for clean energy conversion and storage applications. NPJ 2D Mater Appl 5(1):1–21. https://doi.org/10.1038/s41699-021-00239-8

    Article  CAS  Google Scholar 

  65. Zaed MA, Tan KH, Abdullah N, Saidur R, Pandey AK, Saleque AM (2024) Cost analysis of MXene for low-cost production, and pinpointing of its economic footprint. Open Ceram 17:100526. https://doi.org/10.1016/J.OCERAM.2023.100526

    Article  CAS  Google Scholar 

  66. Tan KH, Zaed MA, Saidur R, Abdullah N, Ishak NAIM, Cherusseri J (2024) Strategic insights for bulk production of MXene: a review. In: E3S web of conferences, vol. 488, p 01003, Feb. 2024. https://doi.org/10.1051/E3SCONF/202448801003

  67. Lakhe P et al (2019) Process safety analysis for Ti3C2Tx MXene synthesis and processing. Ind Eng Chem Res 58(4):1570–1579. https://doi.org/10.1021/ACS.IECR.8B05416/SUPPL_FILE/IE8B05416_SI_001.PDF

    Article  CAS  Google Scholar 

  68. Thakur A et al (2023) Step-by-step guide for synthesis and delamination of Ti3C2Tx MXene. Small Methods 7(8):2300030. https://doi.org/10.1002/SMTD.202300030

    Article  CAS  Google Scholar 

  69. Zhang J et al (2020) Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv Mater 32(23):2001093. https://doi.org/10.1002/ADMA.202001093

    Article  CAS  Google Scholar 

  70. Mashtalir O, Lukatskaya MR, Zhao MQ, Barsoum MW, Gogotsi Y (2015) Amine-assisted delamination of Nb2C MXene for Li-Ion energy storage devices. Adv Mater 27(23):3501–3506. https://doi.org/10.1002/ADMA.201500604

    Article  CAS  PubMed  Google Scholar 

  71. Mashtalir O et al (2013) Intercalation and delamination of layered carbides and carbonitrides. Nat Commun 4(1):1–7. https://doi.org/10.1038/ncomms2664

    Article  CAS  Google Scholar 

  72. Mohammadi AV, Rosen J, Gogotsi Y (2021) The world of two-dimensional carbides and nitrides (MXenes). Science (1979). https://doi.org/10.1126/SCIENCE.ABF1581/ASSET/81125F49-2018-4AA2-BB0D-1C892C90A287/ASSETS/GRAPHIC/372_ABF1581_F6.JPEG

    Article  Google Scholar 

  73. Barsoum MW (2022) MAX phases: properties of machinable ternary carbides and nitrides, p. 421. Accessed 24 Aug 2022. [Online]. https://books.google.com/books/about/MAX_Phases.html?id=qMcZAgAAQBAJ

  74. Verger L, Xu C, Natu V, Cheng HM, Ren W, Barsoum MW (2019) Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Curr Opin Solid State Mater Sci 23(3):149–163. https://doi.org/10.1016/j.cossms.2019.02.001

    Article  CAS  Google Scholar 

  75. Wang XH, Zhou YC (2002) Microstructure and properties of Ti3AlC2 prepared by the solid–liquid reaction synthesis and simultaneous in-situ hot pressing process. Acta Mater 50(12):3143–3151. https://doi.org/10.1016/s1359-6454(02)00117-9

    Article  Google Scholar 

  76. Yang LX, Wang Y, Zhang HL, Liu HJ, Zeng CL (2019) A simple method for the synthesis of nanosized Ti3AlC2 powder in NaCL-KCL molten salt. Mater Res Lett 7(9):361–367. https://doi.org/10.1080/21663831.2019.1613695

    Article  CAS  Google Scholar 

  77. Chen D, Tian X, Wang H, Huang Z (2014) Rapid synthesis of bulk Ti3AlC2 by laser melting. Mater Lett 129:98–100. https://doi.org/10.1016/j.matlet.2014.05.023

    Article  CAS  Google Scholar 

  78. Desai V, Shrivastava A, Zala A, Parekh T, Gupta S, Jamnapara NI (2023) Pressureless manufacturing of high purity Ti3AlC2 MAX phase material: synthesis and characterisation. Vacuum 214:112221. https://doi.org/10.1016/J.VACUUM.2023.112221

    Article  CAS  Google Scholar 

  79. Lapauw T et al (2016) Synthesis of the new MAX phase Zr2AlC synthesis of the new MAX phase Zr2AlC. J Eur Ceram Soc 8(36):1847–1853. https://doi.org/10.1016/j.jeurceramsoc.2016.02.044

    Article  CAS  Google Scholar 

  80. Ashok A, Saseendran SB, Asha AS (2022) Synthesis of Ti3C2Tx MXene from the Ti3AlC2 MAX phase with enhanced optical and morphological properties by using ammonia solution with the in-situ HF forming method. Phys Scr 97(2):025807. https://doi.org/10.1088/1402-4896/AC4C53

    Article  Google Scholar 

  81. Feng A et al (2017) Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2. Mater Des 1(114):161–166. https://doi.org/10.1016/J.MATDES.2016.10.053

    Article  Google Scholar 

  82. Lin Z, Zhuo M, Zhou Y, Li M, Wang J (2006) Microstructures and theoretical bulk modulus of layered ternary tantalum aluminum carbides. J Am Ceram Soc 89(12):3765–3769. https://doi.org/10.1111/J.1551-2916.2006.01303.X

    Article  CAS  Google Scholar 

  83. Lapauw T et al (2016) Synthesis of the novel Zr3AlC2 MAX phase. J Eur Ceram Soc 36(3):943–947. https://doi.org/10.1016/J.JEURCERAMSOC.2015.10.011

    Article  CAS  Google Scholar 

  84. Lapauw T et al (2016) Synthesis of MAX phases in the Hf-Al-C system. Inorg Chem 55(21):10922–10927. https://doi.org/10.1021/ACS.INORGCHEM.6B01398

    Article  CAS  PubMed  Google Scholar 

  85. Wang X et al (2012) Ti5Al2C3: a new ternary carbide belonging to MAX phases in the Ti–Al–C system. J Am Ceram Soc 95(5):1508–1510. https://doi.org/10.1111/j.1551-2916.2012.05158.x

    Article  CAS  Google Scholar 

  86. Rawn CJ, Barsoum MW, El-raghy T, Procipio A (2008) Structure of Ti4AlN3—a layered M 35(2000):1785–1796

  87. Griseri M et al (2019) Synthesis, properties and thermal decomposition of the Ta4AlC3 MAX phase. J Eur Ceram Soc 39(10):2973–2981. https://doi.org/10.1016/j.jeurceramsoc.2019.04.021

    Article  CAS  Google Scholar 

  88. Hu C, Zhang J, Wang J, Li F, Wang J, Zhou Y (2008) Crystal structure of V4AlC3: A new layered ternary carbide. J Am Ceram Soc 91(2):636–639. https://doi.org/10.1111/j.1551-2916.2007.02136.x

    Article  CAS  Google Scholar 

  89. Ingason AS et al (2017) A nanolaminated magnetic phase: Mn2GaC. Mater Res Lett 2(2):89–93. https://doi.org/10.1080/21663831.2013.865105

    Article  CAS  Google Scholar 

  90. Cuskelly DT, Richards ER, Kisi EH, Keast VJ (2015) Ti3GaC2 and Ti3InC2: First bulk synthesis, DFT stability calculations and structural systematics. J Solid State Chem 230:418–425. https://doi.org/10.1016/j.jssc.2015.07.028

    Article  CAS  Google Scholar 

  91. Eklund P et al (2012) Discovery of the ternary nanolaminated compound Nb2GeC by a systematic theoretical-experimental approach. Phys Rev Lett 109(3):2–5. https://doi.org/10.1103/PhysRevLett.109.035502

    Article  CAS  Google Scholar 

  92. Gregson N, Crang M (2015) From waste to resource: the trade in wastes and global recycling economies 40:151–176. https://doi.org/10.1146/ANNUREV-ENVIRON-102014-021105.

  93. Sathiskumar C, Karthikeyan S (2019) Recycling of waste tires and its energy storage application of by-products—a review. Sustain Mater Technol 22:e00125. https://doi.org/10.1016/J.SUSMAT.2019.E00125

    Article  CAS  Google Scholar 

  94. Liu WJ, Jiang H, Yu HQ (2015) Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev 115(22):12251–12285. https://doi.org/10.1021/ACS.CHEMREV.5B00195/ASSET/ACS.CHEMREV.5B00195.FP.PNG_V03

    Article  CAS  PubMed  Google Scholar 

  95. Haemers J, Gusmão R, Sofer Z (2020) Synthesis protocols of the most common layered carbide and nitride MAX phases. Small Methods 4(3):1900780. https://doi.org/10.1002/SMTD.201900780

    Article  CAS  Google Scholar 

  96. Lei X, Lin N (2022) Structure and synthesis of MAX phase materials: a brief review. Crit Rev Solid State Mater Sci 47(5):736–771. https://doi.org/10.1080/10408436.2021.1966384

    Article  CAS  Google Scholar 

  97. Zhu J et al (2021) Rapid one-step scalable microwave synthesis of Ti3C2Tx MXene. Chem Commun 57(94):12611–12614. https://doi.org/10.1039/D1CC04989E

    Article  CAS  Google Scholar 

  98. Lim KRG, Shekhirev M, Wyatt BC, Anasori B, Gogotsi Y, Seh ZW (2022) Fundamentals of MXene synthesis. Nat Synth 1(8):601–614. https://doi.org/10.1038/s44160-022-00104-6

    Article  Google Scholar 

  99. Abdah MAAM et al (2023) Facile synthesis of microwave-etched Ti3C2 MXene/activated carbon hybrid for lithium-ion battery anode. J Electroanal Chem 928:117050. https://doi.org/10.1016/J.JELECHEM.2022.117050

    Article  CAS  Google Scholar 

  100. Orisaleye JI, Jekayinfa SO, Pecenka R, Ogundare AA, Akinseloyin MO, Fadipe OL (2022) Investigation of the effects of torrefaction temperature and residence time on the fuel quality of corncobs in a fixed-bed reactor. Energies 15(14):5284. https://doi.org/10.3390/EN15145284

    Article  CAS  Google Scholar 

  101. Numan A et al (2022) Microwave-assisted rapid MAX phase etching and delamination: a paradigm shift in MXene synthesis. Mater Chem Phys 288:126429. https://doi.org/10.1016/J.MATCHEMPHYS.2022.126429

    Article  CAS  Google Scholar 

  102. Zeng G et al (2021) High-performing composite membrane based on dopamine-functionalized graphene oxide incorporated two-dimensional MXene nanosheets for water purification. J Mater Sci 56(11):6814–6829. https://doi.org/10.1007/S10853-020-05746-5/METRICS

    Article  CAS  Google Scholar 

  103. Jena RK, Das HT, Patra BN, Das N (2022) MXene-based nanomaterials as adsorbents for wastewater treatment: a review on recent trends. Front Mater Sci 16(1):1–16. https://doi.org/10.1007/S11706-022-0592-X

    Article  Google Scholar 

  104. Verma R, Sharma A, Dutta V, Chauhan A, Pathak D, Ghotekar S (2023) Recent trends in synthesis of 2D MXene-based materials for sustainable environmental applications. Emergent Mater 1:1–28. https://doi.org/10.1007/S42247-023-00591-Z

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their gratitude to Sunway University and the School of Engineering, particularly the Research Center for Nanomaterials and Energy Technology, for their generous funding support provided through the project FRTIN-PRO-57-2022.

Funding

The funding for this project is provided by Sunway University through the Research Center for Nanomaterials and Energy Technology, specifically through the project FRTIN-PRO-57-2022.

Author information

Authors and Affiliations

Authors

Contributions

MA. Zaed was instrumental in developing the core conceptual ideas, contributing significantly to the research design, implementation, result analysis, and manuscript writing. KH. Tan completed the design and execution of the models, along with the data analysis. R. Saidur played a key role in planning, supervising the work, and designing the figures. N. Abdullah was resolving technical details and conducting numerical calculations. AK. Pandey do the final correction (manuscript) and supervising the work.

Corresponding author

Correspondence to M. A. Zaed.

Ethics declarations

Conflict of interest

The authors affirm that they do not have any known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaed, M.A., Tan, K.H., Saidur, R. et al. Invited viewpoint: pathways to low-cost MXene synthesis. J Mater Sci 59, 7575–7594 (2024). https://doi.org/10.1007/s10853-024-09666-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09666-6

Navigation