Skip to main content
Log in

Preparation of PVA/PVDF/PAM-U composite hydrogels by in situ polymerization of ternary DES and their properties study

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Preparation of composite hydrogels by in situ polymerization (SP) using choline chloride (ChCl), acrylamide (AM), and urea (U) as raw materials for deep eutectic solvent (DES), with the introduction of PVA and PVDF as fillers into DES. Characterization of the composite hydrogels was conducted using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). This study analyzed the pressure sensitivity, piezoelectricity, swelling behavior, and mechanical properties of the composite hydrogels. The results indicate that due to the dipole–dipole interactions between PVA and PVDF, the composite hydrogels exhibit excellent pressure sensitivity and piezoelectric performance. When the ratio of PVA to PVDF is 1:1, the composite hydrogels exhibit optimal performance, with a 3.37-fold increase in pressure sensitivity and a 6.49-fold increase in piezoelectricity compared to other ratios. This research provides a method for preparing composite hydrogels with excellent piezoelectric performance and pressure sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Li B, Qin H, Ma M et al (2023) Preparation of novel β-CD/P(AA-co-AM) hydrogels by frontal polymerization. RSC Adv 13(9):5667–5673

    Article  CAS  Google Scholar 

  2. Mi FL, Sung HW, Shyu SS (2002) Drug release from chitosan–alginate complex beads reinforced by a naturally occurring cross-linking agent. Carbohydr Polymers 48(1):61–72

    Article  CAS  Google Scholar 

  3. Zeng S, Zhang J, Zu G et al (2021) Transparent, flexible, and multifunctional starch-based double-network hydrogels as high-performance wearable electronics. Carbohydr Polym 267:118198

    Article  CAS  Google Scholar 

  4. Tang Y-D, Wang P, Li G-X et al (2022) Flexible and ultra-sensitive planar supercapacitive pressure sensor based on porous ionic foam. Adv Eng Mater 25(1):2200814

    Article  Google Scholar 

  5. Toledo L, Racine L, Pérez V et al (2018) Physical nanocomposite hydrogels filled with low concentrations of TiO2 nanoparticles: Swelling, networks parameters and cell retention studies. Mater Sci Eng, C 92(4):769–778

    Article  CAS  Google Scholar 

  6. Wang L, Yu Y, Zhao X et al (2022) A biocompatible self-powered piezoelectric poly(vinyl alcohol)-based hydrogel for diabetic wound repair. ACS Appl Mater Interfaces 14(41):46273–46289

    Article  CAS  Google Scholar 

  7. Baker MI, Walsh SP, Schwartz Z et al (2012) A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res B Appl Biomater 100(5):1451–1457

    Article  Google Scholar 

  8. Bednarz S, Fluder M, Galica M et al (2014) Synthesis of hydrogels by polymerization of itaconic acid-choline chloride deep eutectic solvent. J Appl Polym Sci. https://doi.org/10.1002/app.40608

    Article  Google Scholar 

  9. Liao C, Wu Q, Su T et al (2014) Nanocomposite gels via in situ photoinitiation and disassembly of TiOTiO(2)-clay composites with polymers applied as UV protective films. ACS Appl Mater Interfaces 6(3):1356–1360

    Article  CAS  Google Scholar 

  10. Liu T, Zhang J, Han W et al (2020) 2020 Review—In situ polymerization for integration and interfacial protection towards solid state lithium batteries. J Electrochem Soci 167(7):070527

    Article  CAS  Google Scholar 

  11. Malmstadt N, Jeon T, Schmidt JJ (2008) Long-lived planar lipid bilayer membranes anchored to an in situ polymerized hydrogel. Adv Mater 20(1):84–89

    Article  CAS  Google Scholar 

  12. Feng S, Shang Y, Wang S et al (2010) Novel method for the preparation of ionically crosslinked sulfonated poly(arylene ether sulfone)/polybenzimidazole composite membranes via in situ polymerization. J Membr Sci 346(1):105–112

    Article  CAS  Google Scholar 

  13. Teng D-y, Wu Z-m, Zhang X-g et al (2010) Synthesis and characterization of in situ cross-linked hydrogel based on self-assembly of thiol-modified chitosan with PEG diacrylate using Michael type addition. Polymer 51(3):639–646

    Article  CAS  Google Scholar 

  14. Smith EL, Abbott A, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114(21):11060–11082

    Article  CAS  Google Scholar 

  15. Kim DY, Park H, Park Y-I et al (2021) Polyvinyl alcohol hydrogel-supported forward osmosis membranes with high performance and excellent pH stability. J Ind Eng Chem 99(6):246–255

    Article  CAS  Google Scholar 

  16. Al-Dawsari JN, Bessadok-Jemai A, Wazeer I et al (2020) Fitting of experimental viscosity to temperature data for deep eutectic solvents. J Mol Liq 310:113127

    Article  CAS  Google Scholar 

  17. Ou K, Dong X, Qin C et al (2017) Properties and toughening mechanisms of PVA/PAM double-network hydrogels prepared by freeze-thawing and anneal-swelling. Mater Sci Eng C Mater Biol Appl 77:1017–1026

    Article  CAS  Google Scholar 

  18. Chen K, Chen G, Wei S et al (2018) Preparation and property of high strength and low friction PVA-HA/PAA composite hydrogel using annealing treatment. Mater Sci Eng: C 91:579–588

    Article  CAS  Google Scholar 

  19. Shah N, Patel K (2014) Formulation and development of hydrogel for poly acrylamide-co-acrylic acid. J Pharm Sci Bioscient Res 4(1):114–120

    Google Scholar 

  20. Xiao L, Isner A, Waldrop K et al (2014) Development of bench and full-scale temperature and pH responsive functionalized PVDF membranes with tunable properties. J Memb Sci 457:39–49

    Article  CAS  Google Scholar 

  21. Abasian M, Hooshangi V, Moghadam PN (2017) Synthesis of polyvinyl alcohol hydrogel grafted by modified Fe3O4 nanoparticles: characterization and doxorubicin delivery studies. Iran Polym J 26(5):313–322

    Article  CAS  Google Scholar 

  22. Fumio U, Hiroshi Y, Kumiko N et al (1990) Swelling and mechanical properties of poly(vinyl alcohol) hydrogels. Int J Pharm 58(2):135–142

    Article  Google Scholar 

  23. Dutta A, Ghosal K, Sarkar K et al (2021) From ultrastiff to soft materials: exploiting dynamic metal–ligand cross-links to access polymer hydrogels combining customized mechanical performance and tailorable functions by controlling hydrogel Mechanics. Chem Eng J 419(2):129528

    Article  CAS  Google Scholar 

  24. Yang X, Wang Y, Qing X (2019) A flexible capacitive sensor based on the electrospun PVDF nanofiber membrane with carbon nanotubes. Sens Actuat A 299(1):111579

    Article  CAS  Google Scholar 

  25. Johnson KM (1962) Variation of dielectric constant with voltage in ferroelectrics and its application to parametric devices. J Appl Phys 33(9):2826–2831

    Article  Google Scholar 

  26. Wu J, Chen T, Wang Y et al (2022) Piezoelectric effect of antibacterial biomimetic hydrogel promotes osteochondral defect repair. Biomedicines 10(5):1165

    Article  CAS  Google Scholar 

Download references

Funding

This article was funded by 2022 Knowledge Innovation Dawn Special Plan Project, Grant No. 2022010801020393, bin li, Research and Innovation Initiatives of WHPU, Grant No. 2022J04, bin li.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Li.

Additional information

Handling Editor: Mohammad Naraghi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Zhou, M., Wu, A. et al. Preparation of PVA/PVDF/PAM-U composite hydrogels by in situ polymerization of ternary DES and their properties study. J Mater Sci 59, 715–727 (2024). https://doi.org/10.1007/s10853-023-09247-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09247-z

Navigation