Skip to main content
Log in

Compensation behaviors and phase transitions of a 3D fullerene-like polymer

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The compensation behaviors and phase transitions of a new 3D fullerene-like polymer are explored by using Monte Carlo method. The ground-state phase diagrams and magnetization profiles are given, and the conditions for the occurrence of the compensation temperature Tcomp are obtained. As classified in Néel theory, N-type and P-type magnetization curves are found. To explore the changes in the transition temperature TC and the compensation temperature Tcomp induced by physical parameters, we also present the phase diagrams. Furthermore, the critical exponents of the system are calculated, and a good agreement can be achieved by comparing our results with others’. Finally, the triple hysteresis loops are discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure. 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

Data availability

All data that support the findings of this study are included within the article.

References

  1. Kroto HW, Allaf AW, Balm SP (1991) C60-Buckministerfullerene. Chem Rev 91:1213–1235

    Article  CAS  Google Scholar 

  2. Haddon RC, Brus LE, Raghavachari K (1986) Rehybridization and π-orbital alignment: the key to the existence of spheroidal carbon clusters. Chem Phys Lett 131:165–169

    Article  CAS  Google Scholar 

  3. Takabayashi Y, Prassides K (2016) Unconventional high-TC superconductivity in fullerides. Philos Trans R Soc A-Math Phys Eng Sci 374:20150320

    Article  Google Scholar 

  4. Tutt LW, Kost A (1992) Optical limiting performance of C60 and C70 solutions. Nature 356:225–226

    Article  CAS  Google Scholar 

  5. Wahlen J, De Vos DE, Jacobs PA, Alsters PL (2004) Solids materials as sources for synthetically useful singlet oxygen. Adv Synth Catal 346:152–164

    Article  CAS  Google Scholar 

  6. Lai YL, Murugan P, Hwang K (2003) Fullerene derivative attenuates ischemia-reperfusion-induced lung injury. Life Sci 72:1271–1278

    Article  CAS  Google Scholar 

  7. Dunsch L, Yang SF, Zhang L, Svitova A, Oswald S, Popov AA (2010) Metal sulfide in a C82 fullerene cage: a new form of endohedral clusterfullerenes. J Am Chem Soc 132:5413–5421

    Article  CAS  Google Scholar 

  8. Chai Y, Guo T, Jin CM, Haufler RE, Felipe Chibante LP, Fure J, Wang LH, Michael Alford J, Smalley RE (1991) Fullerenes with metals inside. J Phys Chem 95:7564–7568

    Article  CAS  Google Scholar 

  9. Amsharov K, Jansen M (2009) Synthesis of a higher fullerene precursor—an “unrolled” C84 fullerene. Chem Commun 19:2691–2693

    Article  Google Scholar 

  10. Shinohara H (2000) Endohedral metallofullerenes. Rep Prog Phys 63:843–892

    Article  CAS  Google Scholar 

  11. Kantar E (2019) The magnetic properties of the spin-1 ising fullerene cage with a core-shell structure. J Supercond Nov Magn 32:425–430

    Article  CAS  Google Scholar 

  12. Kantar E (2017) Superconductivity-like phenomena in an ferrimagnetic endohedral fullerene with diluted magnetic surface. Solid State Commun 263:31–37

    Article  CAS  Google Scholar 

  13. Kantar E (2019) Effective field study of the magnetism and superconductivity in idealised Ising-type X@Y-60 endohedral fullerene system. Philos Mag 99:1669–1693

    Article  CAS  Google Scholar 

  14. Kantar E (2017) The thermal behaviors and phase diagrams of the Ising-type endohedral fullerene with magnetic core and diluted magnetic shell (Core@Shell(20)). Eur Phys J B 90:152

    Article  Google Scholar 

  15. Wang L, Davids PS, Saxena A, Bishop AR (1992) Quasi-particle energy-spectra and magnetic response of certain curved graphitic geometries. Phys Rev B 46:7175–7178

    Article  CAS  Google Scholar 

  16. Wang L, Davids PS, Saxena A, Bishop AR (1993) Magnetic response of certain curved graphitic geometries. Synth Met 56:3008–3013

    Article  CAS  Google Scholar 

  17. Kantar E (2017) Dynamic calculations of the core/shell structured Ising-type endohedral fullerenes: The effect of core and core/shell interaction. Mod Phys Lett B 31:1750307

    Article  CAS  Google Scholar 

  18. Benhouria Y, Essaoudi I, Ainane A, Ahuja R (2019) Dynamic magneto-caloric effect of a C70 fullerene: dynamic Monte Carlo. Physica E 108:191–196

    Article  CAS  Google Scholar 

  19. Lin F, Sorensen ES, Kallin C, Berlinsky AJ (2007) Strong correlation effects in the fullerene C20 studied using a one-band Hubbard model. Phys Rev B 76:033414

    Article  Google Scholar 

  20. Sabzevar M, Solaimani M, Ehsani MH, Tehrani DHT (2020) The effect of vacancy-defects on the magnetic properties of Ising fullerene-like nano-structures: a Monte Carlo study. J Magn Magn Mater 502:166573

    Article  CAS  Google Scholar 

  21. Li Q, Wang W, Sun L, Li BC, Tian M (2021) Magnetic and thermodynamic properties of a diluted fullerene-like structure X-20 with embedded atom. Physica B 623:413362

    Article  CAS  Google Scholar 

  22. Wang W, Li BC, Wang TL, Li Q, Wang F (2022) Thermodynamic and magnetocaloric properties of an A(n)B(60-n) fullerene-like structure under the applied magnetic field. J Magn Magn Mater 553:169292

    Article  CAS  Google Scholar 

  23. Gao ZY, Lv D, Wang W, Yang LM, Sun L, Wang F (2021) Magnetic properties of a fullerene-like X-20 structure with embedded metal atom. Phys Scr 96:125858

    Article  Google Scholar 

  24. Wang TL, Wang W, Li Q, Li BC (2022) Prediction of magnetic properties of a single-molecule magnetic metallofullerene cluster DySc2N@C80. Physica B 647:414377

    Article  CAS  Google Scholar 

  25. Zhang ZD (2013) Mathematical structure of the three-dimensional (3D) Ising model. Chin Phys B 22:030513

    Article  Google Scholar 

  26. Zhang ZD, Suzuki O, March NH (2019) Clifford algebra approach of 3D Ising model. Adv Appl Clifford Algebr 29:12

    Article  Google Scholar 

  27. Zhang ZD (2020) Computational complexity of spin-glass three-dimensional (3D) Ising model. J Mater Sci Technol 44:116–120

    Article  Google Scholar 

  28. Mhirech A, Aouini S, Alaoui-Ismaili A, Bahmad L (2017) Monte Carlo study of the magnetic properties in a fullerene-like Structure: X-20, X-60, or X-70. J Supercond Nov Magn 30:925–930

    Article  CAS  Google Scholar 

  29. Aouini S, Mhirech A, Alaoui-Ismaili A, Bahmad L (2018) Magnetic properties in different fullerenes X-n nano-structures: Monte Carlo study. Chin J Phys 56:1640–1647

    Article  CAS  Google Scholar 

  30. Sahdane T, Mhirech A, Bahmad L, Kabouchi B (2018) Magnetic properties of a bi-fullerene-like structure, X-60-Y-60, with RKKY interactions in the Blume-Capel model. Int J Mod Phys B 32:1850031

    Article  CAS  Google Scholar 

  31. Aouini S, Mhirech A, Alaoui-Ismaili A, Bahmad L (2019) Phase diagrams and magnetic properties of a double fullerene structure with core/shell. Chin J Phys 59:346–356

    Article  CAS  Google Scholar 

  32. El Maazouzi A, Masrour R, Jabar A (2022) Study of the magnetic properties of LiMn1.5Ni0.5O4 spinel: Ab initio calculation and Monte Carlo simulation. J Cryt Growth 584:126552

    Article  Google Scholar 

  33. Belhamra S, Masrour R, Jabar A, Hlil EK (2022) Magnetic properties of B-site mixed of quantum spin liquid in the triangular ferromagnetic Sr3CuSb2O9 system. Indian J Phys 97:121–126

    Article  Google Scholar 

  34. Jerrari M, Masrour R, Jabar A, Sahdane T (2023) Effect of defects on a nano-borophene structure consisting of mixed spins S=2 and sigma=5/2: Monte Carlo simulations. Indian J Phys 97:767–777

    Article  CAS  Google Scholar 

  35. Brazhkin VV, Lyapin AG, Popova SV, Klyuev YA, Naletov AM (1998) Mechanical properties of the 3D polymerized, sp2-sp3 amorphous, and diamond-plus-graphite nanocomposite carbon phases prepared from C60 under high pressure. J Appl Phys 84:219–226

    Article  CAS  Google Scholar 

  36. Marques L, Mezouar M, Hodeau JL, Núnez-Regueiro M, Serebryanaya N, Ivdenko V, Blank V, Dubitsky G (1999) “Debye-Scherrer ellipses” from 3D fullerene polymers: an anisotropic pressure memory signature. Science 283:1720–1723

    Article  CAS  Google Scholar 

  37. Buga S, Blank V, Fransson A, Serebryanaya N, Sundqvist B (2002) DSC study of annealing and phase transformations of C60 and C70 polymerized under pressures in the range 9.5-13 GPa. J Phys Chem Solid 63:331–343

    Article  CAS  Google Scholar 

  38. Yamanaka S, Kubo A, Inumaru K, Komaguchi K, Kini N, Inoue T, Irifune T (2006) Electron conductive three-dimensional polymer of cuboidal C60. Phys Rev Lett 96:076602

    Article  Google Scholar 

  39. Yamanaka S, Kini N, Kubo A, Jida S, Kuramoto H (2008) Topochemical 3D polymerization of C60 under high pressure at elevated temperatures. J Am Chem Soc 30:4303–4309

    Article  Google Scholar 

  40. Sato Y, Terauchi M, Yamanaka S (2015) Electronic structures of three-dimensional C60 polymers studied by high-energy-resolution electron energy-loss spectroscopy based on transmission electron microscopy. Chem Phys Lett 626:90–95

    Article  CAS  Google Scholar 

  41. Laranjeira J, Marques L, Mezouar M, Melle-Franco M, Strutynski K (2017) Bonding frustration in the 9.5 GPa fcc polymeric C60. Phys Stat Sol-Rapid Res Lett 11:1700343

    Google Scholar 

  42. Mezouar M, Marques L, Hodeau JL, Pischedda V, Núnez-Regueiro M (2003) Equation of state of an anisotropic three-dimensional C60 polymer: the most stable form of fullerene. Phys Rev B 68:193414

    Article  Google Scholar 

  43. Laranjeira J, Marques L, Fortunato NM, Melle-Franco M, Strutynski K, Barroso M (2018) Three-dimensional C60 polymers with ordered binary-alloy-type structures. Carbon 137:511–518

    Article  CAS  Google Scholar 

  44. Mazin I, Liechtenstein A, Gunnarsson O, Andersen O, Antropov V, Burkov S (1993) Orientational order in A3C60: antiferromagnetic Ising model for the fcc lattice. Phys Rev Lett 70:4142–4145

    Article  CAS  Google Scholar 

  45. Yildirim T, Hong S, Harris A, Mele E (1993) Orientational phases for M3C60. Phys Rev B 48:12262–12277

    Article  CAS  Google Scholar 

  46. Li BC, Lv D, Wang W, Wang TL, Wang F (2022) Thermodynamic properties and magnetocaloric effect of a graphdiyne bilayer with RKKY interaction. J Magn Magn Mater 560:169607

    Article  CAS  Google Scholar 

  47. Li BC, Wang W, Lv JQ, Yang M, Wang F (2022) Compensation and critical characteristics of the ferrimagnetic bilayer graphdiyne film with RKKY interaction. Appl Phys A-Mater Sci Process 128:445

    Article  CAS  Google Scholar 

  48. Lv D, Li HY, Zhang DZ, Li BC (2023) Insights into magnetic behaviors of an Ising graphene ladder-type chain structure applied in an external magnetic field. Micro Nanostructures 180:207609

    Article  CAS  Google Scholar 

  49. Li BC, Lv D, Wang W, Li HY (2023) Exploration of magnetic characteristics in perovskite LaCoO3 by particle swarm optimization combined with Monte Carlo method. Phys Lett A 464:128697

    Article  CAS  Google Scholar 

  50. Li BC, Lv D, Wang W, Sun L, Hao ZM, Bao J (2023) Compensation temperature and hysteresis behaviors of a graphene-like bilayer: Monte Carlo Study. Commun Theor Phys 75:045702

    Article  Google Scholar 

  51. Zhang XH, Wang W, Li BC, An Y (2023) Exploring magnetic properties of an edge-modified kekulene multilayer cluster in an external magnetic field. Eur Phys J Plus 138:333

    Article  CAS  Google Scholar 

  52. Li NX, Wang W, Liu JY, Xu ZY, Xu C, Yang JL (2023) Monte Carlo study of magnetic properties of CrI3-like structure. Micro Nanostructures 181:207610

    Article  CAS  Google Scholar 

  53. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  CAS  Google Scholar 

  54. Tukey JW (1958) A problem of Berkson, and minimum variance orderly estimators. Ann Math Statist 29:588–592

    Article  Google Scholar 

  55. Fisher ME, Barber MN (1972) Scaling theory for finite-size effects in the critical region. Phys Rev Lett 28:1516–1519

    Article  Google Scholar 

  56. Landau P, Binder K (2005) A Guide to Monte Carlo Simulations in Statistical Physics. Cambridge University Press, New York, NY, USA

    Book  Google Scholar 

  57. Stanley HE (1971) Introduction to Phase Transition and Critical Phenomena. Clarendon Press-Oxford, Oxford

    Google Scholar 

  58. Privman V (Ed.) (1990) Finite Size Scaling and Numerical Simulation of Statistical Systems. World Scientific.

  59. Néel L (1948) Propriétés magnétiques des ferrites ferrimagnétisme et antiferromagnétisme. Ann Phys 3:137–198

    Article  Google Scholar 

  60. An Y, Wang W, Xiao BW, Huang SY, Xu ZY (2023) Insight into the magnetic behavior and magnetocaloric effect of a borophene monolayer. Commu Theor Phys 75:115701

    Article  Google Scholar 

  61. Yang Y, Wang W, Ma H, Li Q, Gao ZY, Huang T (2019) Magnetic and thermodynamic properties of a ferrimagnetic mixed-spin (1/2, 1, 3/2) Ising nanoisland: Monte Carlo study. Physica E 108:358–371

    Article  CAS  Google Scholar 

  62. Le Guillou JC, Zinn-Justin J, Zinn-Justin J (1980) Critical exponents from field theory. Phys Rev B 21:3976–3998

    Article  Google Scholar 

  63. Baker AG, Nickel BG, Meiron DI (1978) Critical indices from perturbation analysis of the Callan-Symanzik equation. Phys Rev B 17:1365

    Article  Google Scholar 

  64. McKenzie S (1979) Self-Avioding Walks on the Face-centered cubic lattice. J Phys A 12:267

    Article  Google Scholar 

  65. Huang K (1987) Statistical mechanics, 2nd edn. Wiley, New York

    Google Scholar 

  66. Kaul SN (1985) Static critical phenomena in ferromagnets with quenched disorder. J Magn Magn Mater 53:1

    Article  Google Scholar 

  67. Banerjee BK (1964) On a generalised approach to first and second order magnetic transitions. Phys Lett 12:16

    Article  Google Scholar 

  68. Fisher ME, Ma SK, Nickel BG (1972) Critical Exponents for Long-Range Interactions. Phys Rev Lett 29:917

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by Natural Science Foundation of Liaoning province (Grant No. 2023-MS-218), National Natural Science Foundation of China (Grant No. U22A20215, 52077141 and 52211540392).

Author information

Authors and Affiliations

Authors

Contributions

B-cL performed conceptualization, writing—original draft preparation, formal analysis, supervision, and visualization. WW provided funding acquisition, project administration, writing—reviewing, and editing. YA conducted data curation, software, investigation, and validation. Z-yX analyzed resources and methodology.

Corresponding author

Correspondence to Wei Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not Applicable.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Bc., Wang, W., An, Y. et al. Compensation behaviors and phase transitions of a 3D fullerene-like polymer. J Mater Sci 59, 698–714 (2024). https://doi.org/10.1007/s10853-023-09238-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09238-0

Navigation