Skip to main content

Advertisement

Log in

Synthesis and performance analysis of a polysulfone braid-supported hollow fiber membrane for natural gas purification

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To address the issue of low mechanical strength in self-supported hollow fiber membranes, a research study was conducted to fabricate polysulfone braid-reinforced hollow fiber (PSF BRHF) membranes for natural gas purification. In this study, polyethylene (PET) was used as a braid support. PSF BRHF membranes were fabricated by employing dip coating and drying technique. The BRHF membranes underwent comprehensive analysis, including the manipulation of polymer (PSF) concentration (15 wt%, 18 wt%, and 21 wt%) and the number of coating layers (1–4). Characterization of the fabricated membrane samples involved scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), gas separation performance testing, and mechanical strength testing. The results indicated that membranes fabricated with higher polymer concentrations exhibited a denser structure with a thicker separation layer. An increase in the separation layer thickness was also observed with an increasing number of coating layers. Importantly, all fabricated membrane samples demonstrated remarkable thermal stability. To assess the performance, gas separation tests were conducted using pure gases at 3 bar. Notably, the membrane sample with 21 wt% PSF and the 3rd coating layer (21_3 PSF) exhibited the most promising gas separation performance among all the samples selected to carry out the separation performance test, achieving a CO2/CH4 selectivity of 1.83. Mechanical strength testing revealed that 21_3 PSF BRHF (68.2 MPa) fabricated in this study outperformed conventional self-supported PSF hollow fiber membranes (9.44 MPa), as reported in the literature. These findings underscore the potential of BRHF membranes for natural gas purification, although further improvements are still possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

Data availability

The data will be available on request from corresponding authors.

References

  1. Tabe-Mohammadi A (1999) A review of the applications of membrane separation technology in natural gas treatment. Sep Sci Technol 34(10):2095–2111

    Article  CAS  Google Scholar 

  2. Speight JG, (2014) Oil and gas corrosion prevention: From surface facilities to refineries. Gulf Professional Publishing.

  3. Han Y, Ho WSW (2021) Polymeric membranes for CO2 separation and capture. J Membr Sci 628:119244

    Article  CAS  Google Scholar 

  4. Chong K et al (2016) Recent progress of oxygen/nitrogen separation using membrane technology. J Eng Sci Technol 11:1016–1030

    Google Scholar 

  5. Ebrahimi A et al (2015) Energetic, exergetic and economic assessment of oxygen production from two columns cryogenic air separation unit. Energy 90:1298–1316

    Article  CAS  Google Scholar 

  6. Kargari A, Rezaeinia S (2020) State-of-the-art modification of polymeric membranes by PEO and PEG for carbon dioxide separation: a review of the current status and future perspectives. J Ind Eng Chem 84:1–22

    Article  CAS  Google Scholar 

  7. Wallace DW, Staudt-Bickel C, Koros WJ (2006) Efficient development of effective hollow fiber membranes for gas separations from novel polymers. J Membr Sci 278(1–2):92–104

    Article  CAS  Google Scholar 

  8. Javaid A (2005) Membranes for solubility-based gas separation applications. Chem Eng J 112(1–3):219–226

    Article  CAS  Google Scholar 

  9. Samuel O et al (2022) Treatment of oily wastewater using photocatalytic membrane reactors: a critical review. J Environ Chem Eng 10(6):108539

    Article  CAS  Google Scholar 

  10. Zhang Z, Fuoco A, He G (2021) Membranes for gas separation. Membranes (Basel) 11(10):755

    Article  CAS  Google Scholar 

  11. Sridhar S, Bee S, and Bhargava SK, (2014) Membrane-based gas separation: principle, applications and future potential. Chem. Eng. Dig, 1–25.

  12. Lasseuguette E, Comesaña-Gándara B (2022) Polymer membranes for gas separation. Membranes (Basel) 12(2):207

    Article  CAS  Google Scholar 

  13. Namboodiri VV, Vane LM (2007) High permeability membranes for the dehydration of low water content ethanol by pervaporation. J Membr Sci 306(1–2):209–215

    Article  CAS  Google Scholar 

  14. Imtiaz A et al (2023) A critical review in recent progress of hollow fiber membrane contactors for efficient CO2 separations. Chemosphere 325:138300

    Article  CAS  Google Scholar 

  15. Samuel O et al (2023) Photocatalytic degradation of recalcitrant aromatic hydrocarbon compounds in oilfield-produced water: a critical review. J Clean Prod 415:137567

    Article  CAS  Google Scholar 

  16. Peng N et al (2012) Evolution of polymeric hollow fibers as sustainable technologies: past, present, and future. Prog Polym Sci 37(10):1401–1424

    Article  CAS  Google Scholar 

  17. Turken T et al (2019) Progress on reinforced braided hollow fiber membranes in separation technologies: a review. J Water Process Eng 32:100938

    Article  Google Scholar 

  18. Kamaludin R et al (2023) ZIF-8-based dual layer hollow fiber mixed matrix membrane for natural gas purification. Fuel 354:129377

    Article  CAS  Google Scholar 

  19. Mahon HI, (1966) Permeability separatory apparatus, permeability separatory membrane element, method of making the same and process utilizing the same. Google Patents.

  20. Imtiaz A et al (2022) Challenges, opportunities and future directions of membrane technology for natural gas purification: a critical review. Membranes (Basel) 12(7):646

    Article  CAS  Google Scholar 

  21. Goh K et al (2015) Graphene oxide as effective selective barriers on a hollow fiber membrane for water treatment process. J Membr Sci 474:244–253

    Article  CAS  Google Scholar 

  22. Quan Q et al (2014) Preparation and properties of two-dimensional braid heterogeneous-reinforced polyvinylidene fluoride hollow fiber membrane. Adv Mater Res. 936:218–225

    Article  Google Scholar 

  23. Imtiaz A et al (2022) ZIF-filler incorporated mixed matrix membranes (MMMs) for efficient gas separation: a review. J Environ Chem Eng 10(6):108541

    Article  CAS  Google Scholar 

  24. Fuke M, Kuroki T, and Tanaka T, (2002) Polysulfone-base hollow-fiber hemocathartic membrane and processes for the production thereof. Google Patents.

  25. Ismail A et al (1999) Production of super selective polysulfone hollow fiber membranes for gas separation. Polymer 40(23):6499–6506

    Article  CAS  Google Scholar 

  26. Kneifel K, Peinemann K-V (1992) Preparation of hollow fiber membranes from polyetherimide for gas separation. J Membr Sci 65(3):295–307

    Article  CAS  Google Scholar 

  27. Lee MS, Choi SH, and Shin YC, (2008) Braid-reinforced hollow fiber membrane. 2008, Google Patents.

  28. Cooper, W.W. and E.M. Shea, Process for casting integrally supported tubular membranes. 1972, Google Patents.

  29. Hayano F, Hashino Y, and Ichikawa K, (1977) Semipermeable composite membranes. Google Patents.

  30. Quan Q, et al., (2015) Preparation and characterization of braided tube reinforced polyacrylonitrile hollow fiber membranes. J Appl Polym Sci. 132(14).

  31. Fan Z et al (2015) Structure design and performance study on braid-reinforced cellulose acetate hollow fiber membranes. J Membr Sci 486:248–256

    Article  CAS  Google Scholar 

  32. Lee MS, Choi SH, and Shin YC, (2007) Braid-reinforced hollow fiber membrane, Google Patents.

  33. Hao J et al (2016) Preparation and performance of PET-braid-reinforced poly (vinylidene fluoride)/graphene hollow-fiber membranes. Ind Eng Chem Res 55(7):2174–2182

    Article  CAS  Google Scholar 

  34. Zhou Z et al (2018) Improving bonding strength between a hydrophilic coating layer and poly (ethylene terephthalate) braid for preparing mechanically stable braid-reinforced hollow fiber membranes. J Appl Polym Sci 135(14):46104

    Article  Google Scholar 

  35. Chen M et al (2017) Study on the structural design and performance of novel braid-reinforced and thermostable poly (m-phenylene isophthalamide) hollow fiber membranes. RSC Adv 7(33):20327–20335

    Article  CAS  Google Scholar 

  36. Liu H et al (2017) Preparation and performance of braid-reinforced poly (vinyl chloride) hollow fiber membranes. J Appl Polym Sci 134(28):45068

    Article  Google Scholar 

  37. Liu J et al (2009) Preparation of PET threads reinforced PVDF hollow fiber membrane. Desalination 249(2):453–457

    Article  CAS  Google Scholar 

  38. Turken T et al (2021) Fabrication and characterization of polysulfone reinforced hollow fibre membrane. Environ Technol 42(17):2690–2699

    Article  CAS  Google Scholar 

  39. Quan Q et al (2014) Preparation and properties of two-dimensional braid heterogeneous-reinforced polyvinylidene fluoride hollow fiber membrane. Adv Mater Res 936:218–225

    Article  Google Scholar 

  40. Zhang Q et al (2016) Fabrication of TiO2 nanofiber membranes by a simple dip-coating technique for water treatment. Surf Coat Technol 298:45–52

    Article  CAS  Google Scholar 

  41. Chong KC et al (2018) Preparation, characterization, and performance evaluation of polysulfone hollow fiber membrane with PEBAX or PDMS coating for oxygen enhancement process. Polymers 10(2):126

    Article  Google Scholar 

  42. Wahab MSA, Abd Rahman S, (2018) The effect number of PebaxÒ 1657 coating layer on thin film composite (TFC) membrane for CO2/N2 separation.

  43. Abedini R, Nezhadmoghadam A (2010) Application of membrane in gas separation processes: its suitability and mechanisms. Pet Coal 52(2):69–80

    CAS  Google Scholar 

  44. Karim SS et al (2022) The influence of polymer concentration on the morphology and mechanical properties of asymmetric polyvinyl alcohol (PVA) membrane for O2/N2 separation. Polym Polym Compos 30:09673911221090053

    CAS  Google Scholar 

  45. Sharip MS, Sazali N, Ahmad FN (2020). Effect of polymer concentration on matrimid 5218 based-carbon membrane for H2 separation. J Appl Memb Sci Technol, 24(1), https://doi.org/10.11113/amst.v24n1.175

  46. Kluge S, Kose T, Tutuş M (2022) Tuning the morphology and gas separation properties of polysulfone membranes. Membranes 12(7):654

    Article  CAS  Google Scholar 

  47. Ismail AF, Lai PY (2003) Effects of phase inversion and rheological factors on formation of defect-free and ultrathin-skinned asymmetric polysulfone membranes for gas separation. Sep Purif Technol 33(2):127–143

    Article  CAS  Google Scholar 

  48. Julian H, Wenten I (2012) Polysulfone membranes for CO2/CH4 separation: state of the art. IOSR J Eng 2(3):484–495

    Article  Google Scholar 

  49. Yamasaki A et al (1997) Effect of gelation conditions on gas separation performance for asymmetric polysulfone membranes. J Membr Sci 123(1):89–94

    Article  CAS  Google Scholar 

  50. Valappil RSK, Ghasem N, Al-Marzouqi M (2021) Current and future trends in polymer membrane-based gas separation technology: a comprehensive review. J Ind Eng Chem 98:103–129

    Article  Google Scholar 

  51. Khan IU et al (2020) ZIF-8 based polysulfone hollow fiber membranes for natural gas purification. Polym Testing 84:106415

    Article  Google Scholar 

  52. Suleman MS, Lau K, Yeong Y (2016) Characterization and performance evaluation of PDMS/PSF membrane for CO2/CH4 separation under the effect of swelling. Proc Eng 148:176–183

    Article  CAS  Google Scholar 

  53. Rafiq S et al (2012) Kinetics of thermal degradation of polysulfone/polyimide blended polymeric membranes. J Appl Polym Sci 123(6):3755–3763

    Article  CAS  Google Scholar 

  54. Mustaffar M, Ismail A, and Illias R (2004) Study on the effect of polymer concentration on hollow fiber ultrafiltration membrane performance and morphology. In: Regional Symposium on Membrane Science and Technology, Malaysia. Citeseer.

  55. Ismail A, Khulbe K, Matsuura T (2015) Membrane Fabrication/Manufacturing Techniques. Polymeric and Inorganic, Gas Separation Membranes. https://doi.org/10.1007/978-3-319-01095-3_4

    Book  Google Scholar 

  56. Anokhina T et al (2021) Express method of preparation of hollow fiber membrane samples for spinning solution optimization: polysulfone as example. Membranes 11(6):396

    Article  CAS  Google Scholar 

  57. Karunakaran M et al (2017) CO2-philic thin film composite membranes: Synthesis and characterization of PAN-r-PEGMA copolymer. Polymers 9(7):219

    Article  Google Scholar 

  58. Nordin NAM et al (2015) Utilizing low ZIF-8 loading for an asymmetric PSf/ZIF8 mixed matrix membrane for CO2/CH4 separation. RSC Adv 5(38):30206–30215

    Article  Google Scholar 

  59. Farnam M, Mukhtar H, Shariff A (2015) Investigation of optimum drying conditions for pure PES membranes for gas separation. Adv Environ Biol 9(27):326–331

    Google Scholar 

  60. Dahe G, Teotia R, Bellare J (2012) The role of zeolite nanoparticles additive on morphology, mechanical properties and performance of polysulfone hollow fiber membranes. Chem Eng J 197:398–406

    Article  CAS  Google Scholar 

  61. Kagramanov G, Gurkin V, Farnosova E (2021) Physical and mechanical properties of hollow fiber membranes and technological parameters of the gas separation process. Membranes 11(8):583

    Article  CAS  Google Scholar 

  62. Kotsilkova R et al (2018) Tensile and surface mechanical properties of polyethersulphone (PES) and polyvinylidene fluoride (PVDF) membranes. J Theor Appl Mech 48:85–99

    Article  Google Scholar 

  63. Chen XY, Kaliaguine S, and Rodrigue D. (2019) Polymer hollow fiber membranes for gas separation: a comparison between three commercial resins. In: AIP Conference Proceedings. AIP Publishing.

Download references

Acknowledgements

The authors gratefully acknowledge Ministry of Higher Education under Science and Technology Research Partnership for Sustainable Development (SATREPS) scheme (Vot number: R.J130000.7809.4L975), and Universiti Teknologi Malaysia under the Matching Grant (Project number: Q.J130000.3009.03M15 ) and UTM Fundamental Research (UTMFR) (Project number: Q.J130000.3809.22H07). The authors also would like to thank UMW for the Contract Research Grant (Project number: R.J130000.7609.4C471).

Funding

The Funding was provided by UTM, (R.J130000.7309.4B676/Q.J130000.3009.03M23), Mohd Hafiz Dzarfan Othman

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohd Hafiz Dzarfan Othman or Asim Jilani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imtiaz, A., Kamaludin, R., Othman, M.H.D. et al. Synthesis and performance analysis of a polysulfone braid-supported hollow fiber membrane for natural gas purification. J Mater Sci 59, 304–323 (2024). https://doi.org/10.1007/s10853-023-09208-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09208-6

Navigation