Skip to main content
Log in

Invited viewpoint: in situ nanostructured lamellar composites

  • Invited Viewpoint
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The discontinuous precipitation reaction has been observed in many alloys for more than 50 years. Most of the work on this phase transformation is aimed at suppressing it as it is known to be deleterious for mechanical properties when it is confined to grain boundary regions. However, it has been postulated that if the transformation goes to completion, then significant strengthening can occur analogous to the pearlite transformation in steels. In this article, we argue that this transformation has the potential to offer a new paradigm for both structural and functional applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

© 2019, 2020, Elsevier)

Figure 3

© 2020, Elsevier)

Figure 4

Similar content being viewed by others

References

  1. Hornbogen E (1972) Systematics of the cellular precipitation reactions. Metall Mater Trans B 3:2717–2727

    Article  CAS  Google Scholar 

  2. Davies CKL, Nash P, Stevens RN (1980) Precipitation in Ni-Co-Al alloys. J Mater Sci 15:1521–1532

    Article  CAS  Google Scholar 

  3. Davies C, Nash P, Stevens R, Yap L (1985) Precipitation in Ni–Co–Al alloys. J Mater Sci 20:2945–2957

    Article  CAS  Google Scholar 

  4. Hillert M (1982) An improved model for discontinuous precipitation. Acta Metall 30:1689–1696

    Article  CAS  Google Scholar 

  5. Klinger LM, Brechet YJM, Purdy GR (1997) On velocity and spacing selection in discontinuous precipitation—I. Simplif Anal Approach Acta Mater 45:5005–5013

    Article  CAS  Google Scholar 

  6. Robson JD (2013) Modeling competitive continuous and discontinuous precipitation. Acta Mater 61:7781–7790

    Article  CAS  Google Scholar 

  7. Ferguson CG, Christofidou KA, Hildyard EM, Wilson AS, Jones NG, Stone HJ (2020) On the continuous and discontinuous precipitation of the L12 phase in Cu-Ni-Al alloys. Materialia 13:100855. https://doi.org/10.1016/j.mtla.2020.100855

    Article  CAS  Google Scholar 

  8. Manna I, Pabi S, Gust W (2001) Discontinuous reactions in solids. Int Mater Rev 46:53–91

    Article  CAS  Google Scholar 

  9. Boumerzoug Z, Fatmi M (2009) Effect of heat treatments on discontinuous precipitation kinetics in Al-30 wt.% Zn alloy. Mater Charact 60:768–774

    Article  CAS  Google Scholar 

  10. Hamana D, Boumaza L (2009) Precipitation mechanism in Ag–8 wt.% Cu alloy. J Alloys Compd 477:217–223

    Article  CAS  Google Scholar 

  11. Lin J, Meng L (2008) Effect of aging treatment on microstructure and mechanical properties of Cu–Ag alloys. J Alloys Compd 454:150–155

    Article  CAS  Google Scholar 

  12. Semboshi S, Ikeda J, Iwase A, Takasugi T, Suzuki S (2015) Effect of boron doping on cellular discontinuous precipitation for age-Hardenable Cu–Ti alloys. Materials 8:3467–3478

    Article  CAS  Google Scholar 

  13. Zhou Y (2017) Synthesis of nanoplate structures in Ni-based alloys via discontinuous precipitation, PhD dissertation, Illinois Institute of Technology

  14. Zhou Y, Nash P, Liu T, Zhao N, Zhu S (2016) The large scale synthesis of aligned plate nanostructures. Sci Rep 6:1–8

    Article  Google Scholar 

  15. Yu S, Gao Y, Liu C, Han X (2015) Effect of aging temperature on precipitation behavior and mechanical properties of extruded AZ80-Ag alloy. J Alloys Compd 646:431–436

    Article  CAS  Google Scholar 

  16. Guo W, Dryden JR, Purdy GR (1993) Observations of the effect of an applied stress on the morphology of discontinuous precipitation in a Cu-Cd alloy. Acta Metall Mater 41:1183–1188

    Article  CAS  Google Scholar 

  17. Xie W, Wang Q, Xie G, Mi X, Liu D, Gao X-C (2016) Kinetics of discontinuous precipitation in Cu–20Ni–20Mn alloy. Int J Miner Metall Mater 23:323–329

    Article  CAS  Google Scholar 

  18. Semboshi S, Sato S, Iwase A, Takasugi T (2016) Discontinuous precipitates in age-hardening CuNiSi alloys. Mater Charact 115:39–45

    Article  CAS  Google Scholar 

  19. Cao Y, Han SZ, Choi E-A, Ahn JH, Mi X, Huang G, Lee S, Shin H, Kim S, Lee J (2021) Effect of pre-deformation before aging on discontinuous precipitation behaviour in Cu-Ni-Si alloys. Philos Mag Lett 101:51–59. https://doi.org/10.1080/09500839.2020.1844916

    Article  CAS  Google Scholar 

  20. Susan DF, Ghanbari Z, Kotula PG, Michael JR, Rodriguez MA (2014) Characterization of continuous and discontinuous precipitation phases in Pd-Rich precious metal alloys. Metall Mater Trans A 45:3755–3766

    Article  CAS  Google Scholar 

  21. Zhou Y, Zhou F, Martins JMR, Nash P, Wang J (2019) The effect of discontinuous γ’ precipitation on the mechanical properties of Al-Co-Ni alloys. Mater Charact 151:612–619. https://doi.org/10.1016/j.matchar.2019.04.003

    Article  CAS  Google Scholar 

  22. Wang C, Zhou F, Zhou Y, Wang M, Liang J, Wang J, Gan B (2020) Investigations of strength and ductility in Ni-xCo-10Al alloys via discontinuous precipitation. Mater Charact 163:110318. https://doi.org/10.1016/j.matchar.2020.110318

    Article  CAS  Google Scholar 

  23. Fan L, Yang T, Zhao Y, Luan J, Zhou G, Wang H, Jiao Z, Liu C-T (2020) Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures. Nat Commun 11:6240. https://doi.org/10.1038/s41467-020-20109-z

    Article  CAS  Google Scholar 

  24. Dasari S, Chang Y-J, Jagetia A, Soni V, Sharma A, Gwalani B, Gorsse S, Yeh A-C, Banerjee R (2021) Discontinuous precipitation leading to nano-rod intermetallic precipitates in an Al0.2Ti0.3Co1.5CrFeNi1.5 high entropy alloy results in an excellent strength-ductility combination. Mater Sci Eng A 805:140551. https://doi.org/10.1016/j.msea.2020.140551

    Article  CAS  Google Scholar 

  25. Rosler J, Nath O, Jager S, Schmitz F, Mukherji D (2005) Fabrication of nanoporous Ni-based superalloy membranes. Acta Mater 53:1397–1406

    Article  Google Scholar 

  26. Shrestha R, Joshi DR, Gopali J, Piya S (2009) Oligodynamic action of silver, copper and brass on enteric bacteria isolated from water of Kathmandu Valley, Nepal. J Sci Technol 10:189–193

    Google Scholar 

  27. Zhou F, Zhou Y, Wang J, Liang J, Gao H, Kang M (2019) Enlightening from γ, γ′ and β phase transformations in Al-Co-Ni alloy system: a review. Curr Opin Solid State Mater Sci 23:100784. https://doi.org/10.1016/j.cossms.2019.100784

    Article  CAS  Google Scholar 

  28. Zhou F, Zhou Y, Jiang M, Liang J, Fu C, Wang C, Liu J, Gao H, Kang M, Wang J (2020) Ni-based aligned plate intermetallic nanostructures as effective catalysts for hydrogen evolution reaction. Mater Lett 272:127831. https://doi.org/10.1016/j.matlet.2020.127831

    Article  CAS  Google Scholar 

  29. Jia Z, Yang T, Sun L, Zhao Y, Li W, Luan J, Lyu F, Zhang L, Kruzic JJ, Kai J, Huang JC, Lu J, Liu CT (2020) A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution. Adv Mater 32:2000385. https://doi.org/10.1002/adma.202000385

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Yang Zhou is grateful for the support of Shanghai Sailing Program (19YF1422600) and National Natural Science Foundation of China (No. 52001205).

Funding

Natural Science Foundation of Shanghai, 19YF1422600, Yang Zhou, National Natural Science Foundation of China, 52001205, Yang Zhou

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Nash.

Ethics declarations

Conflict of interest

YZ declares no conflict of interest. PN is an editor of Journal of Materials Science.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nash, P., Zhou, Y. Invited viewpoint: in situ nanostructured lamellar composites. J Mater Sci 57, 791–797 (2022). https://doi.org/10.1007/s10853-021-06753-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06753-w

Navigation