Skip to main content
Log in

Laser sintering of coated polyamide 12: a new way to improve flammability

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study coatings of kaolin and talc particles were successfully applied on the surface of polyamide 12 powder intended for laser sintering (LS). Microscopic observations revealed that using carboxymethyl cellulose (CMC) as surface modifier for fillers led to a better coverage of polymer grains with a surface coverage between 6 and 16% as a function of filler type and content. Differential scanning calorimetry measurements showed that the addition of talc and kaolin led to an increase in the crystallization temperature of PA12, but at the expense of processability. Process parameters were optimized in order to manufacture LS samples with the different coated powders. Fire behavior assessed by cone calorimetry showed that the use of CMC resulted in a significant decrease in the peak of heat release rate depending on the filler type and content. This behavior can be partially explained by an interaction between CMC, fillers and polymer, with the formation of amide linkage between carboxyl part of CMC and amine end groups of polyamide, resulting in an increase in the complex viscosity of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Cano AJ, Salazar A, Rodríguez J (2018) Effect of temperature on the fracture behavior of polyamide 12 and glass-filled polyamide 12 processed by selective laser sintering. Eng Fract Mech 203:66–80. https://doi.org/10.1016/j.engfracmech.2018.07.035

    Article  Google Scholar 

  2. Hon KKB, Gill TJ (2003) Selective laser sintering of SiC/polyamide composites. CIRP Ann Manuf Technol 52:173–176. https://doi.org/10.1016/S0007-8506(07)60558-7

    Article  Google Scholar 

  3. Mazzoli A, Moriconi G, Pauri MG (2007) Characterization of an aluminum-filled polyamide powder for applications in selective laser sintering. Mater Des 28:993–1000. https://doi.org/10.1016/j.matdes.2005.11.021

    Article  CAS  Google Scholar 

  4. Feng P, Niu M, Gao C, et al (2014) A novel two-step sintering for nano-hydroxyapatite scaffolds for bone tissue engineering. Sci Rep 4

  5. Tan LJ, Zhu W, Zhou K (2020) Development of organically modified montmorillonite/polypropylene composite powders for selective laser sintering. Powder Technol 369:25–37. https://doi.org/10.1016/j.powtec.2020.05.005

    Article  CAS  Google Scholar 

  6. Chunze Y, Yusheng S, Jinsong Y, Jinhui L (2009) A nanosilica/nylon-12 composite powder for selective laser sintering. J Reinf Plast Compos 28:2889–2902. https://doi.org/10.1177/0731684408094062

    Article  CAS  Google Scholar 

  7. Dadbakhsh S, Verbelen L, Vandeputte T et al (2016) Effect of powder size and shape on the SLS processability and mechanical properties of a TPU elastomer. Phys Procedia 83:971–980. https://doi.org/10.1016/j.phpro.2016.08.102

    Article  CAS  Google Scholar 

  8. Borille AV, De Oliveira GJ, Lopes D (2017) Geometrical analysis and tensile behaviour of parts manufactured with flame retardant polymers by additive manufacturing. Rapid Prototyp J 23:169–180. https://doi.org/10.1108/RPJ-09-2015-0130

    Article  Google Scholar 

  9. Majewski C, Zarringhalam H, Hopkinson N (2008) Effect of the degree of particle melt on mechanical properties in selective laser-sintered Nylon-12 parts. Proc Inst Mech Eng Part B J Eng Manuf 222:1055–1064. https://doi.org/10.1243/09544054JEM1122

    Article  Google Scholar 

  10. Yuan S, Zheng Y, Chua CK et al (2018) Electrical and thermal conductivities of MWCNT/polymer composites fabricated by selective laser sintering. Compos A Appl Sci Manuf 105:203–213. https://doi.org/10.1016/j.compositesa.2017.11.007

    Article  CAS  Google Scholar 

  11. Ippolito F, Hübner G, Claypole T, Gane P (2021) Calcium carbonate as functional filler in polyamide 12-manipulation of the thermal and mechanical properties. Processes 9. https://doi.org/10.3390/pr9060937

  12. Ippolito F, Hübner G, Claypole T, Gane P (2020) Influence of the surface modification of calcium carbonate on polyamide 12 composites. Polymers (Basel) 12. https://doi.org/10.3390/polym12061295

  13. Ippolito F, Hübner G, Claypole T, Gane P (2021) Impact of bimodal particle size distribution ratio of functional calcium carbonate filler on thermal and flowability properties of polyamide 12. Appl Sci 11:1–13. https://doi.org/10.3390/app11020641

    Article  CAS  Google Scholar 

  14. Ippolito F, Rentsch S, Hübner G et al (2019) Influence of calcium carbonate on polyamide 12 regarding melting, formability and crystallization properties. Compos Part B Eng 164:158–167. https://doi.org/10.1016/j.compositesb.2018.11.079

    Article  CAS  Google Scholar 

  15. Schmidt J, Sachs M, Fanselow S et al (2016) Optimized polybutylene terephthalate powders for selective laser beam melting. Chem Eng Sci 156:1–10. https://doi.org/10.1016/j.ces.2016.09.009

    Article  CAS  Google Scholar 

  16. Koo JH, Pilato L, Wissler G, et al (2005) Innovative selective laster sintering rapid manufacturing using nanotechnology. 16th Solid Free Fabr Symp SFF 2005 11:98–108

  17. Espera AH, Valino AD, Palaganas JO et al (2019) 3D printing of a robust polyamide-12-carbon black composite via selective laser sintering: thermal and electrical conductivity. Macromol Mater Eng 304:1–8. https://doi.org/10.1002/mame.201800718

    Article  CAS  Google Scholar 

  18. Batistella M, Regazzi A, Pucci MF et al (2020) Selective laser sintering of polyamide 12/flame retardant compositions. Polym Degrad Stab 181:109318. https://doi.org/10.1016/j.polymdegradstab.2020.109318

    Article  CAS  Google Scholar 

  19. Zhu W, Yan C, Shi Y, et al (2016) A novel method based on selective laser sintering for preparing high-performance carbon fibres/polyamide12/epoxy ternary composites. Sci. Rep. 6

  20. Tan LJ, Zhu W, Zhou K (2020) Recent progress on polymer materials for additive manufacturing. Adv Funct Mater 30:1–54. https://doi.org/10.1002/adfm.202003062

    Article  CAS  Google Scholar 

  21. Yuan S, Bai J, Chua CK et al (2016) Highly enhanced thermal conductivity of thermoplastic nanocomposites with a low mass fraction of MWCNTs by a facilitated latex approach. Compos Part A Appl Sci Manuf 90:699–710. https://doi.org/10.1016/j.compositesa.2016.09.002

    Article  CAS  Google Scholar 

  22. Chen B, Berretta S, Evans K et al (2018) A primary study into graphene/polyether ether ketone (PEEK) nanocomposite for laser sintering. Appl Surf Sci 428:1018–1028. https://doi.org/10.1016/j.apsusc.2017.09.226

    Article  CAS  Google Scholar 

  23. Gan X, Wang J, Wang Z et al (2019) Simultaneous realization of conductive segregation network microstructure and minimal surface porous macrostructure by SLS 3D printing. Mater Des 178:107874. https://doi.org/10.1016/j.matdes.2019.107874

    Article  CAS  Google Scholar 

  24. Frost RL (1997) Kaolinite hydroxyls-a raman microscopy study. Clay Miner 32:471–484. https://doi.org/10.1180/claymin.1997.032.3.09

    Article  CAS  Google Scholar 

  25. Olabanji SO, Ige AO, Mazzoli C et al (2005) Quantitative elemental analysis of an industrial mineral talc, using accelerator-based analytical technique. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 240:327–332. https://doi.org/10.1016/j.nimb.2005.06.159

    Article  CAS  Google Scholar 

  26. Batistella M, Otazaghine B, Sonnier R et al (2016) Fire retardancy of polypropylene/kaolinite composites. Polym Degrad Stab 129:260–267. https://doi.org/10.1016/j.polymdegradstab.2016.05.003

    Article  CAS  Google Scholar 

  27. Almeras X, Le Bras M, Hornsby P et al (2003) Effect of fillers on the fire retardancy of intumescent polypropylene compounds. Polym Degrad Stab 82:325–331. https://doi.org/10.1016/S0141-3910(03)00187-3

    Article  CAS  Google Scholar 

  28. Clerc L, Ferry L, Leroy E, Lopez-Cuesta J-MM (2005) Influence of talc physical properties on the fire retarding behaviour of (ethylene–vinyl acetate copolymer/magnesium hydroxide/talc) composites. Polym Degrad Stab 88:504–511. https://doi.org/10.1016/j.polymdegradstab.2004.12.010

    Article  CAS  Google Scholar 

  29. Ansari DM, Price GJ (2004) Correlation of mechanical properties of clay filled polyamide mouldings with chromatographically measured surface energies. Polymer (Guildf) 45:3663–3670. https://doi.org/10.1016/j.polymer.2004.03.045

    Article  CAS  Google Scholar 

  30. Batistella MA, Sonnier R, Otazaghine B et al (2018) Interactions between kaolinite and phosphinate-based flame retardant in Polyamide 6. Appl Clay Sci 157:248–256. https://doi.org/10.1016/j.clay.2018.02.021

    Article  CAS  Google Scholar 

  31. Batistella M, Caro-Bretelle ASS, Otazaghine B et al (2015) The influence of dispersion and distribution of ultrafine kaolinite in polyamide-6 on the mechanical properties and fire retardancy. Appl Clay Sci 116–117:8–15. https://doi.org/10.1016/j.clay.2015.07.034

    Article  CAS  Google Scholar 

  32. Qin H, Su Q, Zhang S et al (2003) Thermal stability and flammability of polyamide 66/montmorillonite nanocomposites. Polymer (Guildf) 44:7533–7538. https://doi.org/10.1016/j.polymer.2003.09.014

    Article  CAS  Google Scholar 

  33. Vahabi H, Batistella MAA, Otazaghine B et al (2012) Influence of a treated kaolinite on the thermal degradation and flame retardancy of poly(methyl methacrylate). Appl Clay Sci 70:58–66. https://doi.org/10.1016/j.clay.2012.09.013

    Article  CAS  Google Scholar 

  34. Marney DCO, Russell LJ, Wu DY et al (2008) The suitability of halloysite nanotubes as a fire retardant for nylon 6. Polym Degrad Stab 93:1971–1978

    Article  CAS  Google Scholar 

  35. Dahiya JBB, Muller-Hagedorn M, Bockhorn H, Kandola BKK (2008) Synthesis and thermal behaviour of polyamide 6/bentonite/ammonium polyphosphate composites. Polym Degrad Stab 93:2038–2041. https://doi.org/10.1016/j.polymdegradstab.2008.02.016

    Article  CAS  Google Scholar 

  36. Jang B, Wilkie C (2005) The effect of clay on the thermal degradation of polyamide 6 in polyamide 6/clay nanocomposites. Polymer (Guildf) 46:3264–3274. https://doi.org/10.1016/j.polymer.2005.02.078

    Article  CAS  Google Scholar 

  37. Lao SCC, Wu C, Moon TJJ et al (2009) Flame-retardant polyamide 11 and 12 nanocomposites: Thermal and flammability properties. J Compos Mater 43:1803–1818. https://doi.org/10.1177/0021998309338413

    Article  CAS  Google Scholar 

  38. Lopez-Cuesta J, Laoutid F (2009) Multicomponent FR Systems. In: Wilkie CA, Morgan AB (eds) Fire retardancy of polymeric materials, 2nd edn. CRC Press, Boca Raton, pp 301–328

    Google Scholar 

  39. Domka L, Malickaa A, Stachowiakc N et al (2008) The effect of kaolin modification of silane coupling agents on the properties of the polyethylene composites. Polish J Chem Technol 10:5–10. https://doi.org/10.2478/v10026-008-0020-8

    Article  CAS  Google Scholar 

  40. Buggy M, Bradley G, Sullivan A (2005) Polymer–filler interactions in kaolin/nylon 6,6 composites containing a silane coupling agent. Compos A Appl Sci Manuf 36:437–442. https://doi.org/10.1016/j.compositesa.2004.10.002

    Article  CAS  Google Scholar 

  41. Domka L, Malicka A, Stachowiak N (2010) The effect of kaolin modification of silane coupling agents on the properties of the polyethylene composites, pp 5–10

  42. Brady PVP, Cygan RTR, Nagy KL (1996) Molecular controls on kaolinite surface charge. J Colloid Interface Sci 183:356–364

    Article  CAS  Google Scholar 

  43. Wegner A, Witt G (2015) Understanding the decisive thermal processes in laser sintering of polyamide 12. AIP Conf Proc 1664:1–6. https://doi.org/10.1063/1.4918511

    Article  Google Scholar 

  44. Drummer D, Wudy K, Drexler M (2014) Influence of energy input on degradation behavior of plastic components manufactured by selective laser melting. Phys Procedia 56:176–183. https://doi.org/10.1016/j.phpro.2014.08.160

    Article  CAS  Google Scholar 

  45. Drummer D, Drexler M, Wudy K (2015) Density of laser molten polymer parts as function of powder coating process during additive manufacturing. Procedia Eng 102:1908–1917. https://doi.org/10.1016/j.proeng.2015.01.331

    Article  Google Scholar 

  46. Mailhos-Lefievre V, Sallet D, Martel B et al (1989) Thermal degradation of pure and flame-retarded polyamides 11 and 12. Polym Degrad Stab 23:327–336. https://doi.org/10.1016/0141-3910(89)90055-4

    Article  CAS  Google Scholar 

  47. Regazzi A, Pucci MF, Dumazert L et al (2019) Controlling the distribution of fire retardants in poly(lactic acid) by fused filament fabrication in order to improve its fire behaviour. Polym Degrad Stab 163:143–150. https://doi.org/10.1016/j.polymdegradstab.2019.03.008

    Article  CAS  Google Scholar 

  48. Kashiwagi T, Mu M, Winey K et al (2008) Relation between the viscoelastic and flammability properties of polymer nanocomposites. Polymer (Guildf) 49:4358–4368. https://doi.org/10.1016/j.polymer.2008.07.054

    Article  CAS  Google Scholar 

  49. Bigg DM (1982) Rheological analysis of highly loaded polymeric composites filled with non-agglomerating spherical filler particles. Polym Eng Sci 22:512–518. https://doi.org/10.1002/pen.760220810

    Article  CAS  Google Scholar 

  50. Han CD, Van Den Weghe T, Shete P, Haw JR (1981) Effects of coupling agents on the rheological properties, processability, and mechanical properties of filled polypropylene. Polym Eng Sci 21:196–204. https://doi.org/10.1002/pen.760210404

    Article  CAS  Google Scholar 

  51. Bai J, Goodridge RD, Yuan S et al (2015) Thermal Influence of CNT on the polyamide 12 nanocomposite for selective laser sintering. Molecules 20:19041–19050. https://doi.org/10.3390/molecules201019041

    Article  CAS  Google Scholar 

  52. Cuba-Chiem LT, Huynh L, Ralston J, Beattie DA (2008) In situ particle film ATR-FTIR studies of CMC adsorption on talc: the effect of ionic strength and multivalent metal ions. Miner Eng 21:1013–1019. https://doi.org/10.1016/j.mineng.2008.03.007

    Article  CAS  Google Scholar 

  53. Roy S, Das T, Zhang L et al (2015) Triggering compatibility and dispersion by selective plasma functionalized carbon nanotubes to fabricate tough and enhanced Nylon 12 composites. Polymer (Guildf) 58:153–161. https://doi.org/10.1016/j.polymer.2014.12.032

    Article  CAS  Google Scholar 

  54. Rafiq R, Cai D, Jin J, Song M (2010) Increasing the toughness of nylon 12 by the incorporation of functionalized graphene. Carbon N Y 48:4309–4314. https://doi.org/10.1016/j.carbon.2010.07.043

    Article  CAS  Google Scholar 

  55. Marzbani P, Resalati H, Ghasemian A, Shakeri A (2016) Surface modification of talc particles with phthalimide: study of composite structure and consequences on physical, mechanical, and optical properties of deinked pulp. BioResources 11. https://doi.org/10.15376/biores.11.4.8720-8738

  56. Kloprogge JT, Frost RL, Rintoul L (1999) Single crystal Raman microscopic study of the asbestos mineral chrysotile. Phys Chem Chem Phys 1:2559–2564. https://doi.org/10.1039/a809238i

    Article  CAS  Google Scholar 

  57. Chowdhury R, Banerji MS, Shivakumar K (2006) Development of acrylonitrile-butadiene (NBR)/polyamide thermoplastic elastomeric compositions: effect of carboxylation in the NBR phase. J Appl Polym Sci 100:1008–1012. https://doi.org/10.1002/app.22876

    Article  CAS  Google Scholar 

  58. Gerstner P, Paltakari J, Gane PAC (2009) A lumped parameter model for thermal conductivity of paper coatings. Transp Porous Media 78:1–9. https://doi.org/10.1007/s11242-008-9276-y

    Article  CAS  Google Scholar 

  59. Tolochko NK, Khlopkov YV, Mozzharov SE et al (2000) Absorptance of powder materials suitable for laser sintering. Rapid Prototyp J 6:155–161. https://doi.org/10.1108/13552540010337029

    Article  Google Scholar 

  60. Laumer T, Stichel T, Nagulin K, Schmidt M (2016) Optical analysis of polymer powder materials for Selective Laser Sintering. Polym Test 56:207–213. https://doi.org/10.1016/j.polymertesting.2016.10.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the European Union (FEDER funding for the Occitanie region), the Occitanie region for funding the POLIFRIL project.

Funding

This study was funded by European Union (FEDER funding for the Occitanie region – POLIFRIL Project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Batistella.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Gregory Rutledge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batistella, M., Kadri, O., Regazzi, A. et al. Laser sintering of coated polyamide 12: a new way to improve flammability. J Mater Sci 57, 739–754 (2022). https://doi.org/10.1007/s10853-021-06621-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06621-7

Navigation