Skip to main content
Log in

A novel FeCrMoCSi metallic glass with excellent corrosion resistance and in vitro cellular response for biomedical applications

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The corrosion resistance and biocompatibility of a novel Fe50Cr18Mo10C20Si2 metallic glass (Fe–MG), are studied by electrochemical measurements and indirect contacting cytotoxicity assays for biomedical applications. In Hank’s solution, the Fe–MG shows better corrosion resistance than SS316L, evidenced by the larger polarization resistance in the potentiodynamic and electrochemical impedance spectroscopy (EIS) tests, and the lower amounts of released metallic ions during the immersion test. X-ray photoelectron spectroscopy (XPS) analyses show that a double-layer passive film, consisting of outer Fe-rich oxide and inner Cr-rich oxide, is formed on the Fe–MG. The stable passive film, together with the defect-free nature of the metallic glass, accounts for good corrosion resistance. In addition, in vitro tests suggest that the Fe–MG extracts have good blood compatibility, and no cytotoxicity to murine fibroblast cells. Compared with other Fe-based metallic glasses, the prepared novel Fe–MG contains no toxic elements, and shows a low corrosion rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time, due to technical or time limitations. Concurrently, the data also forms part of an ongoing study.

References

  1. Nielson K (1987) Corrosion of metallic implants. Br. Corros. J. 22:272–278. https://doi.org/10.1179/000705987798271352

    Article  Google Scholar 

  2. Reclaru L, Lüthy H, Ziegenhagen R, Eschler P-Y, Blatter A (2008) Anisotropy of nickel release and corrosion in austenitic stainless steels. Acta Biomater. 4:680–685. https://doi.org/10.1016/j.actbio.2007.10.008

    Article  CAS  Google Scholar 

  3. Wu H, Liang L, Lan X et al (2020) Tribological and biological behaviors of laser cladded Ti-based metallic glass composite coatings. Surf Sci Appl. https://doi.org/10.1016/j.apsusc.2019.145104

    Article  Google Scholar 

  4. Doran A, Law F, Allen M, Rushton N (1998) Neoplastic transformation of cells by soluble but not particulate forms of metals used in orthopaedic implants. Biomaterials. https://doi.org/10.1016/S0142-9612(97)00209-3

    Article  Google Scholar 

  5. Schroers J, Kumar G, Hodges TM, Chan S, Kyriakides TR (2009) Bulk metallic glasses for biomedical applications. JOM. https://doi.org/10.1007/s11837-009-0128-1

    Article  Google Scholar 

  6. Wu H, Liang L, Zeng H et al (2019) Microstructure and nanomechanical properties of Zr-based bulk metallic glass composites fabricated by laser rapid prototyping. Sci Eng Mater. https://doi.org/10.1016/j.msea.2019.138306

    Article  Google Scholar 

  7. Wu H, Baker I, Liu Y, Wu X, Munroe PR, Zhang J (2013) Tribological studies of a Zr-based bulk metallic glass. Intermetallics. https://doi.org/10.1016/j.intermet.2012.11.010

    Article  Google Scholar 

  8. Wu H, Baker I, Liu Y, Wu X, Munroe PR (2012) Effects of environment on the sliding tribological behaviors of Zr-based bulk metallic glass. Intermetallics. https://doi.org/10.1016/j.intermet.2011.12.025

    Article  Google Scholar 

  9. Liu L, Qiu C, Sun M, Chen Q, Chan K, Pang GK (2007) Improvements in the plasticity and biocompatibility of Zr–Cu–Ni–Al bulk metallic glass by the microalloying of Nb. Sci Eng Mater. https://doi.org/10.1016/j.msea.2006.02.255

    Article  Google Scholar 

  10. Wu H, Baker I, Liu Y, X-l Wu (2012) Dry sliding tribological behavior of Zr-based bulk metallic glass. Trans Nonferrous Met Soc China. https://doi.org/10.1016/s1003-6326(11)61217-x

    Article  Google Scholar 

  11. Wang Y, Li H, Cheng Y, Zheng Y, Ruan L (2013) In vitro and in vivo studies on Ti-based bulk metallic glass as potential dental implant material. Mater Sci Eng. https://doi.org/10.1016/j.msec.2013.04.038

    Article  Google Scholar 

  12. Wu H, X-d Lan Y, Liu, et al (2016) Fabrication, tribological and corrosion behaviors of detonation gun sprayed Fe-based metallic glass coating. Trans Nonferrous Met Soc China. https://doi.org/10.1016/s1003-6326(16)64271-1

    Article  Google Scholar 

  13. Li H, Zheng Y (2016) Recent advances in bulk metallic glasses for biomedical applications. Acta Biomater. https://doi.org/10.1016/j.actbio.2016.03.047

    Article  Google Scholar 

  14. Zhu SL, Wang XM, Inoue A (2008) Glass-forming ability and mechanical properties of Ti-based bulk glassy alloys with large diameters of up to 1cm. Intermetallics. https://doi.org/10.1016/j.intermet.2008.05.006

    Article  Google Scholar 

  15. Etiemble A, Der Loughian C, Apreutesei M et al (2017) Innovative Zr-Cu-Ag thin film metallic glass deposed by magnetron PVD sputtering for antibacterial applications. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2016.12.259

    Article  Google Scholar 

  16. Nkou Bouala GI, Etiemble A, Der Loughian C, Langlois C, Pierson JF, Steyer P (2018) Silver influence on the antibacterial activity of multi-functional Zr-Cu based thin film metallic glasses. Surf Coat Technol. https://doi.org/10.1016/j.surfcoat.2017.10.057

    Article  Google Scholar 

  17. Comby-Dassonneville S, Venot T, Borroto A et al (2021) ZrCuAg Thin-Film Metallic Glasses: Toward Biostatic Durable Advanced Surfaces. Mater Interfaces ACS Appl. https://doi.org/10.1021/acsami.1c01127

    Article  Google Scholar 

  18. Subramanian B, Maruthamuthu S, Rajan ST (2015) Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels. Int J Nanomedicine. https://doi.org/10.2147/IJN.S79977

    Article  Google Scholar 

  19. Gu XJ, Poon SJ, Shiflet GJ, Widom M (2008) Ductility improvement of amorphous steels: Roles of shear modulus and electronic structure. Acta Mater. https://doi.org/10.1016/j.actamat.2007.09.011

    Article  Google Scholar 

  20. Cai AH, Feng Y, Ding DW et al (2019) Effect of Fe-C alloy additions on properties of Cu-Zr-Ti metallic glasses. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2019.05.256

    Article  Google Scholar 

  21. Zhou J, Sun B, Wang Q, Yang Q, Yang W, Shen B (2019) Effects of Ni and Si additions on mechanical properties and serrated flow behavior in FeMoPCB bulk metallic glasses. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2018.12.331

    Article  Google Scholar 

  22. Souza CAC, Ribeiro DV, Kiminami CS (2016) Corrosion resistance of Fe-Cr-based amorphous alloys: An overview. J Non-Cryst Solids. https://doi.org/10.1016/j.jnoncrysol.2016.04.009

    Article  Google Scholar 

  23. Wang Y, Li H, Cheng Y, Wei S, Zheng Y (2009) Corrosion performances of a Nickel-free Fe-based bulk metallic glass in simulated body fluids. Electrochem Commun. https://doi.org/10.1016/j.elecom.2009.09.027

    Article  Google Scholar 

  24. Zohdi H, Shahverdi H, Hadavi S (2011) Effect of Nb addition on corrosion behavior of Fe-based metallic glasses in Ringer’s solution for biomedical applications. Electrochem Commun. https://doi.org/10.1016/j.elecom.2011.05.017

    Article  Google Scholar 

  25. Tan MW, Akiyama E, Habazaki H, Kawashima A, Asami K, Hashimoto K (1996) The role of chromium and molybdenum in passivation of amorphous Fe-Cr-Mo-P-C alloys in deaerated 1 M HCl. Corros Sci. https://doi.org/10.1016/S0010-938X(96)00071-6

    Article  Google Scholar 

  26. Li S, Wei Q, Li Q, Jiang B, Chen Y, Sun Y (2015) Development of Fe-based bulk metallic glasses as potential biomaterials. Mater Sci Eng. https://doi.org/10.1016/j.msec.2015.03.041

    Article  Google Scholar 

  27. Li H, Lu Z, Wang S, Wu Y, Lu Z (2019) Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications. Prog Mater Sci. https://doi.org/10.1016/j.pmatsci.2019.01.003

    Article  Google Scholar 

  28. Fornell J, Van Steenberge N, Varea A et al (2011) Enhanced mechanical properties and in vitro corrosion behavior of amorphous and devitrified Ti40Zr10Cu38Pd12 metallic glass. J Mech Behav Biomed Mater. https://doi.org/10.1016/j.jmbbm.2011.05.028

    Article  Google Scholar 

  29. ASTM, G102–89 Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements, (2015) ASTM International, West Conshohocken, PA

  30. ASTM, G31–72: Standard Practice for Laboratory Immersion Corrosion Testing of Metals, (2004) ASTM International, West Conshohocken, PA

  31. ASTM, F756–17 Standard practice for assessment of hemolytic properties of materials, (2017) ASTM International, West Conshohocken, PA

  32. Kannan S, Balamurugan A, Rajeswari S (2005) Electrochemical characterization of hydroxyapatite coatings on HNO3 passivated 316L SS for implant applications. Electrochim. Acta 50:2065. https://doi.org/10.1016/j.electacta.2004.09.015

    Article  CAS  Google Scholar 

  33. Fan H-Q, Shi D-D, Ding M-M, Li M-C, Cheng YF, Li Q (2020) Preparation of (3-mercaptopropyl)trimethoxylsilane film on brass and its corrosion resistance in natural seawater. Prog Org Coat. https://doi.org/10.1016/j.porgcoat.2019.105392

    Article  Google Scholar 

  34. Wang Q-Y, Tang Y-R, Pei R, Xi Y-C, Wan S (2020) A study on preparation and corrosion behavior of nano rare earth oxide-modified chromized coatings. Mater Corros. https://doi.org/10.1002/maco.201911017

    Article  Google Scholar 

  35. Wang Q-Y, Pei R, Liu S et al (2020) Microstructure and corrosion behavior of different clad zones in multi-track Ni-based laser-clad coating. Coat Technol Surf. https://doi.org/10.1016/j.surfcoat.2020.126310

    Article  Google Scholar 

  36. Gardin E, Zanna S, Seyeux A, Allion-Maurer A, Marcus P (2019) XPS and ToF-SIMS characterization of the surface oxides on lean duplex stainless steel – Global and local approaches. Corros Sci. https://doi.org/10.1016/j.corsci.2019.04.039E

    Article  Google Scholar 

  37. Asami K, Hashimoto K, Shimodaira S (1977) XPS determination of compositions of alloy surfaces and surface oxides on mechanically polished iron-chromium alloys. Corros Sci. https://doi.org/10.1016/0010-938X(77)90067-1

    Article  Google Scholar 

  38. Asami K, Naka M, Hashimoto K, Masumoto T (1980) Effect of Molybdenum on the Anodic Behavior of Amorphous Fe-Cr-Mo-B Alloys in Hydrochloric Acid. J Electrochem Soc 127:2130. https://doi.org/10.1149/1.2129359

    Article  CAS  Google Scholar 

  39. ISO, 10993–5: 2009 Biological evaluation of medical devices—part 5: tests for in vitro cytotoxicity

  40. ASTM (2008) F756–08 Standard practice for assessment of hemolytic properties of materials ASTM International, West Conshohocken, PA

  41. Long T, Zhang X, Huang Q et al (2017) Novel Mg-based alloys by selective laser melting for biomedical applications: microstructure evolution, microhardness and in vitro degradation behaviour Prototyping. Virtual Phys. https://doi.org/10.1080/17452759.2017.1411662

    Article  Google Scholar 

  42. Li X, Liang L, Tan Y et al (2020) Using hierarchical mesoporous Mg–Al LDH as a potential model to precisely load BSA for biological application. J Micromech Mol Phys. https://doi.org/10.1142/S2424913020500125

    Article  Google Scholar 

  43. Yan C, Ma G, Chen A et al (2020) Additive manufacturing of hydroxyapatite and its composite materials: A review. J Micromech Mol Phys. https://doi.org/10.1142/S2424913020300029

    Article  Google Scholar 

  44. Zhang F, Zhang C, Lv D, Zhu J, Cao W, Chen S, Schmid-Fetzer R (2018) Prediction of Glass Forming Ability Through High Throughput Calculation. J Phase Equilib Diffus. https://doi.org/10.1007/s11669-018-0643-2

    Article  Google Scholar 

  45. Slater JC (1964) Atomic radii in crystals. J Chem Phys. https://doi.org/10.1063/1.1725697

    Article  Google Scholar 

  46. Takeuchi A, Inoue A (2005) Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans. https://doi.org/10.2320/matertrans.46

    Article  Google Scholar 

  47. Schroers J (2010) Processing of bulk metallic glass. Mater Adv. https://doi.org/10.1002/adma.200902776

    Article  Google Scholar 

  48. Assis S, Rogero S, Antunes R, Padilha A, Costa I (2005) A comparative study of the in vitro corrosion behavior and cytotoxicity of a superferritic stainless steel, a Ti-13Nb-13Zr alloy, and an austenitic stainless steel in Hank’s solution. J Biomed Mater Res. https://doi.org/10.1002/jbm.b.30205

    Article  Google Scholar 

  49. Eliaz N (2019) Corrosion of metallic biomaterials: A review. Mater. https://doi.org/10.3390/ma12030407

    Article  Google Scholar 

  50. Costa M, Fernandes M (2000) Proliferation/differentiation of osteoblastic human alveolar bone cell cultures in the presence of stainless steel corrosion products. J Mater Sci Mater Med. https://doi.org/10.1023/A:1008975507654

    Article  Google Scholar 

  51. Refaey S, Taha F, El-Malak A (2005) Corrosion and inhibition of stainless steel pitting corrosion in alkaline medium and the effect of Cl and Br anions. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2004.08.003

    Article  Google Scholar 

  52. Marcus P (1994) On some fundamental factors in the effect of alloying elements on passivation of alloys. Sci Corros. https://doi.org/10.1016/0010-938X(94)90013-2

    Article  Google Scholar 

  53. Sugimoto K, Sawada Y (1977) The role of molybdenum additions to austenitic stainless steels in the inhibition of pitting in acid chloride solutions. Corros Sci. https://doi.org/10.1016/0010-938X(77)90032-4

    Article  Google Scholar 

  54. Pang S, Zhang T, Asami K, Inoue A (2002) Bulk glassy Fe–Cr–Mo–C–B alloys with high corrosion resistance. Corros Sci. https://doi.org/10.1016/S0010-938X(02)00002-1

    Article  Google Scholar 

  55. Liang L, Huang Q, Wu H et al (2021) Stimulation of in vitro and in vivo osteogenesis by Ti-Mg alloys with the sustained-release function of magnesium ions. Colloids Surf B. https://doi.org/10.1016/j.colsurfb.2020.111360

    Article  Google Scholar 

  56. Yang S, Liang L, Liu L et al (2021) Using MgO nanoparticles as a potential platform to precisely load and steadily release Ag ions for enhanced osteogenesis and bacterial killing. Mater Sci Eng. https://doi.org/10.1016/j.msec.2020.111399

    Article  Google Scholar 

  57. Yin Y, Huang Q, Liang L et al (2019) In vitro degradation behavior and cytocompatibility of ZK30/bioactive glass composites fabricated by selective laser melting for biomedical applications. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2019.01.165

    Article  Google Scholar 

  58. Lai X, Roberts E (2019) Cytotoxicity Effects and Ionic Diffusion of Single-Wall Carbon Nanotubes in Cell Membrane. J Micromech Mol Phys. https://doi.org/10.1142/S2424913019500061

    Article  Google Scholar 

  59. Zohdi H, Bozorg M, Arabi Jeshvaghani R, Shahverdi H, Hadavi S (2013) Corrosion performance and metal ion release of amorphous and nanocrystalline Fe-based alloys under simulated body fluid conditions. Lett Mater. https://doi.org/10.1016/j.matlet.2012.12.051

    Article  Google Scholar 

  60. Pratap A, Kasyap S, Prajapati S, Upadhyay D (2021) Bio-corrosion studies of Fe-based metallic glasses. Mater Today. https://doi.org/10.1016/j.matpr.2020.07.588

    Article  Google Scholar 

  61. Wang Y, Li H, Zheng Y, Li M (2012) Corrosion performances in simulated body fluids and cytotoxicity evaluation of Fe-based bulk metallic glasses. Mater Sci Eng. https://doi.org/10.1016/j.msec.2011.12.018

    Article  Google Scholar 

  62. Liu R, He R, Xiao J, Tang M, Zhang H, Guo S (2019) Development of Fe-based bulk metallic glass composite as biodegradable metal. Mater Lett. https://doi.org/10.1016/j.matlet.2019.03.118

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants No. 52071346 and No. 52111530193).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Xiao or Hong Wu.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Liang, L., Huang, Q. et al. A novel FeCrMoCSi metallic glass with excellent corrosion resistance and in vitro cellular response for biomedical applications. J Mater Sci 57, 618–632 (2022). https://doi.org/10.1007/s10853-021-06511-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06511-y

Navigation