Skip to main content
Log in

Metal nanoparticle-loaded porous carbon hollow spheres by twin polymerization

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The formation of silver and gold nanoparticle-encapsulated hollow carbon spheres (HCS) by twin polymerization is reported. Therefore, silica spheres with different diameters (Aerosil® AS90, d = 20 nm; Aerosil® OX50, d = 40 nm; Stöber particles, d = 200 nm) were coated with the metal carboxylates [AgO2C(CH2OCH2)3H] (1) or [(PPh3)AuO2C(CH2OCH2)3H] (2). Thermal treatment of the as-produced templates gave the respective metal nanoparticle-functionalized systems, which were characterized by powder X-ray diffraction (PXRD) and transmission electron microscopy. The plasmon resonance of the surface-bonded particles was determined by using UV–Vis spectroscopy showing absorptions at 412 nm for silver and 524 nm for gold. The metal nanoparticle-modified templates were then coated with a twin polymer layer as result of the acid-catalyzed twin polymerization of 2,2′-spiro-bi[4H-1,3,2-benzodioxasiline] (3). This coating consists of a phenolic resin and in situ formed silicon dioxide nanoclusters. After carbonization and removal of the SiO2 phase by refluxing with a NaOH solution, the appropriate metal-loaded HCS were obtained. The thus prepared carbon materials were characterized by PXRD, electron microscopy and nitrogen adsorption–desorption isotherms. Mainly micro-porous materials (IUPAC type I) were obtained with a surface area between 910 and 1110 m2/g. These HCS materials were used for the catalytic reduction of methylene blue and 4-nitrophenol proving the accessibility of the incorporated M-NPs. A size-dependent influence of the used carbon hull was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Scheme 2
Figure 4
Scheme 3
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Deshmukh AA, Mhlanga SD, Coville N (2010) Molecular-based design and emerging applications of nanoporous carbon spheres. J Mater Sci Eng R Rep 70:1–28

    Article  Google Scholar 

  2. Hu J, Chen M, Fang X, Wu L (2011) Fabrication and application of inorganic hollow spheres. Chem Soc Rev 40:5472–5491

    Article  Google Scholar 

  3. Schüth F (2014) Encapsulation strategies in energy conversion materials. Chem Mater 26:423–434

    Article  Google Scholar 

  4. Büchel G, Unger KK, Matsumoto A, Tsutsumi K (1998) A novel pathway for synthesis of submicrometer-size solid core/mesoporous shell silica spheres. Adv Mater 10:1036–1038

    Article  Google Scholar 

  5. Yoon SB, Sohn K, Kim JY, Shin C-H, Yu J-S, Hyeon T (2001) Fabrication of carbon capsules with hollow macroporous core/mesoporous shell structures. Adv Mater 14:19–21

    Article  Google Scholar 

  6. Valle-Vigón P, Sevilla M, Fuertes AB (2010) Synthesis of uniform mesoporous carbon capsules by carbonization of organosilica nanospheres. Chem Mater 22:2526–2533

    Article  Google Scholar 

  7. Fang B, Kim M, Yu J-S (2008) Hollow core/mesoporous shell carbon as a highly efficient catalyst support in direct formic acid fuel cell. Appl Catal B Environ 84:100–105

    Article  Google Scholar 

  8. Chai GS, Yoon SB, Kim JH, Yu J-S (2004) Spherical carbon capsules with hollow macroporous core and mesoporous shell structures as a highly efficient catalyst support in the direct methanol fuel cell. Chem Commun 1:2766

    Article  Google Scholar 

  9. Hu FP, Wang Z, Li Y, Li C, Zhang X, Shen PK (2008) Improved performance of Pd electrocatalyst supported on ultrahigh surface area hollow carbon spheres for direct alcohol fuel cells. J Power Sources 177:61–66

    Article  Google Scholar 

  10. Lou XW, Deng D, Lee JY, Archer LA (2008) Preparation of SnO2/carbon composite hollow spheres and their lithium storage properties. Chem Mater 20:6562–6566

    Article  Google Scholar 

  11. Valle-Vigón P, Fuertes AB (2011) Magnetically separable carbon capsules loaded with laccase and their application to dye degradation. RSC Adv 1:1756–1762

    Article  Google Scholar 

  12. Valdes-Solis T, Valle-Vigon P, Sevilla M, Fuertes A (2007) Encapsulation of nanosized catalysts in the hollow core of a mesoporous carbon capsule. J Catal 251:239–243

    Article  Google Scholar 

  13. Lou XW, Li CM, Archer LA (2009) Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage. Adv Mater 21:2536–2539

    Article  Google Scholar 

  14. Zhang W-M, Hu J-S, Guo Y-G, Zheng S-F, Zhong L-S, Song W-G, Wan L-J (2008) Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv Mater 20:1160–1165

    Article  Google Scholar 

  15. Kim M, Yoon SB, Sohn K, Kim JY, Shin C-H, Hyeon T, Yu J-S (2003) Synthesis and characterization of spherical carbon and polymer capsules with hollow macroporous core and mesoporous shell structures. Microporous Mesoporous Mater 63:1–9

    Article  Google Scholar 

  16. Zhang Y, Xu S, Luo Y, Pan S, Ding H, Li G (2011) Synthesis of mesoporous carbon capsules encapsulated with magnetite nanoparticles and their application in wastewater treatment. J Mater Chem 21:3664–3671

    Article  Google Scholar 

  17. Sun X, Li Y (2005) Ag@C core/shell structured nanoparticles: controlled synthesis, characterization, and assembly. Langmuir 21:6019–6024

    Article  Google Scholar 

  18. Spange S, Grund S (2009) Nanostructured organic–inorganic composite materials by twin polymerization of hybrid monomers. Adv Mater 21:2111–2116

    Article  Google Scholar 

  19. Spange S, Kempe P, Seifert A, Auer AA, Ecorchard P, Lang H, Falke M, Hietschold M, Pohlers A, Hoyer W, Cox G, Kockrick E, Kaskel S (2009) Nanokomposite mit 0.5 bis 3 nm großen Strukturdomänen durch polymerisation von Silicium-Spiroverbindungen. Angew Chem 121:8403–8408; Angew Chem Int Ed Engl 48:8254–8258

  20. Grund S, Kempe P, Baumann G, Seifert A, Spange S (2007) Zwillingspoly-merisation: ein Weg zur Synthese von Nanokompositen. Angew Chem 119:636–640; Angew Chem Int Ed 46:628–632

  21. Kempe P, Löschner T, Adner D, Spange S (2011) Selective ring opening of 4H-1,3-2-benzodioxasiline twin monomer. New J Chem 35:2735–2739

    Article  Google Scholar 

  22. Kitschke P, Auer AA, Löschner T, Seifert A, Spange S, Rüffer T, Lang H, Mehring M (2014) Microporous carbon and mesoporous silica by use of twin polymerization: an integrated experimental and theoretical approach to precursor reactivity. Chem Plus Chem 79:1009–1023

    Google Scholar 

  23. Löschner T, Mehner A, Grund S, Seifert A, Pohlers A, Lange A, Cox G, Hähnle H.-J, Spange S (2012) Ein modularer Ansatz zur gezielten Herstellung nanostrukturierter Hybridmaterialien: Die Simultane Zwillingspolymerisation. Angew Chem 124(13):3312–3315; Angew Chem Int Ed Engl 51:3258–3261

  24. Böttger-Hiller F, Kempe P, Baumann G, Hietschold M, Schäfer P, Zahn DRT, Petzold A, Thurn-Albrecht T, Spange S (2013) The controlled synthesis of carbon tubes and rods by template-assisted twin polymerization. Adv Mater Sci Eng 2013:1–8

    Article  Google Scholar 

  25. Böttger-Hiller F, Kempe P, Cox G, Panchenko A, Janssen N, Petzold A, Thurn-Albrecht T, Borchardt L, Rose M, Kaskel S, Georgi C, Lang H, Spange S (2013) Zwillingspolymerisation an sphärischen Hart-Templaten—ein Weg zu größeneinstell-baren Kohlenstoffhohlkugeln mit mikro- oder mesoporöser Schale. Angew Chem 25(23):6204–6207; Angew Chem 125:6204–6207

  26. Böttger-Hiller F, Mehner A, Anders S, Kroll L, Cox G, Simon F, Spange S (2012) Sulphur-doped porous carbon from a thiophene-based twin monomer. Chem Commun 48:10568–10570

    Article  Google Scholar 

  27. Brückner J, Thieme S, Böttger-Hiller F, Bauer I, Grossmann HT, Strubel P, Althues H, Spange S, Kaskel S (2014) Carbon-based anodes for lithium-sulfur full cells with high cycle stability. Adv Funct Mater 24:1284–1289

    Article  Google Scholar 

  28. Steffan M, Jakob A, Claus P, Lang H (2009) Silica supported silver nanoparticles from a silver(I) carboxylate: highly active catalyst for regioselective hydrogenation. Catal Commun 10:437–441

    Article  Google Scholar 

  29. Jahn SF, Blaudeck T, Baumann RR, Jakob A, Ecorchard P, Rüffer T, Lang H, Schmidt P (2010) Inkjet printing of conductive silver patterns by using the first aqueous particle-free MOD ink without additional stabilizing ligands. Chem Mater 22:3067–3071

    Article  Google Scholar 

  30. Struppert T, Jakob A, Heft A, Grünler B, Lang H (2010) The use of silver(I)-2-[2-(2-methoxyethoxy)ethoxy]acetate as precursor in the deposition of thin silver layers on float glass by the atmospheric pressure combustion chemical vapor deposition process. Thin Solid Films 518:5741–5744

    Article  Google Scholar 

  31. Tuchscherer A, Schaarschmidt D, Schulze S, Hietschold M, Lang H (2012) Gold nanoparticles generated by thermolysis of “all-in-one” gold(I) carboxylate complexes. Dalton Trans 41:2738–2746

    Article  Google Scholar 

  32. Tuchscherer A, Schaarschmidt D, Schulze S, Hietschold M, Lang H (2011) Simple and efficient: Gold nanoparticles from triphenylphosphane gold(I) carboxylates without addition of any further stabilizing and reducing agent. Inorg Chem Commun 14:676–678

    Article  Google Scholar 

  33. Jahn SF, Jakob A, Blaudeck T, Schmidt P, Lang H, Baumann RR (2010) Inkjet printing of conductive patterns with an aqueous solution of [AgO2C(CH2OCH2)3H] without any additional stabilizing ligands. Thin Solid Films 518:3218–3222

    Article  Google Scholar 

  34. Adner D, Noll J, Schulze S, Hietschold M, Lang H (2016) Asperical silver nanoparticles by thermal decomposition of a single-source-precursor. Inorg Chim Acta 446:19–23

    Article  Google Scholar 

  35. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens Actuators B Chem 54:3–15

    Article  Google Scholar 

  36. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  Google Scholar 

  37. Buffat P, Borel J-P (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13:2287–2298

    Article  Google Scholar 

  38. Arcidiacono S, Bieri NR, Poulikakos D, Grigoropoulos CP (2004) On the coalescence of gold nanoparticles. Int J Multiph Flow 30:979–994

    Article  Google Scholar 

  39. Lastoskie C, Gubbins KE, Quirke N (1993) Pore size distribution analysis of microporous carbons: a density functional theory approach. J Phys Chem 97:4786–4796

    Article  Google Scholar 

  40. Donohue M, Aranovich GL (1998) Classification of Gibbs adsorption isotherms. Adv Colloid Interface Sci 76–77:137–152

    Article  Google Scholar 

  41. Anderson L, Wittkopp SM, Painter CJ, Liegel JJ, Schreiner R, Bell JA, Shakhashiri BZ (2012) What is happening when the blue bottle bleaches: an investigation of the methylene blue-catalyzed air oxidation of glucose. J Chem Educ 89:1425–1431

    Article  Google Scholar 

  42. Jiang Z-J, Liu C-Y, Sun L-W (2005) Catalytic properties of silver nanoparticles supported on silica spheres. J Phys Chem B 109:1730–1735

    Article  Google Scholar 

  43. Pradhan N, Pal A, Pal T (2001) Catalytic reduction of aromatic nitro compounds by coinage metal nanoparticles. Langmuir 17:1800–1802

    Article  Google Scholar 

  44. Wunder S, Lu Y, Albrecht M, Ballauff M (2011) Catalytic activity of faceted gold nanoparticles studied by a model reaction: evidence for substrate-induced surface restructuring. ACS Catal 1:908–916

    Article  Google Scholar 

  45. Cui J, Gao L, Yan S, Zhang W, Li Y, Gao L (2014) The direct decomposition of nitric oxide over Fe/CNOs (CNOs: carbon nano onions). Synth React Inorg Met Nano Met Chem 45:158–163

    Article  Google Scholar 

  46. Pozun ZD, Rodenbusch SE, Keller E, Tran K, Tang W, Stevenson KJ, Henkelman G (2013) A systematic investigation of p-nitrophenol reduction by bimetallic dendrimer encapsulated nanoparticles. J Phys Chem C Nanomater Interfaces 117:7598–7604

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank T. Jagemann and M. Hiet-schold for SEM imaging of different samples, L. Mertens and M. Mehring for carrying out the powder X-ray diffraction studies and A. Kirillova for preparing the Stöber particles and TEM imaging of the metal nanoparticle-functionalized templates thereof.

Funding

This study was funded by the Deutsche Forschungsgemeinschaft (Grant number: FOR 1497, Organic–Inorganic Nanocomposites by Twin Polymerization).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Lang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 617 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schliebe, C., Graske, T., Gemming, T. et al. Metal nanoparticle-loaded porous carbon hollow spheres by twin polymerization. J Mater Sci 52, 12653–12662 (2017). https://doi.org/10.1007/s10853-017-1346-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1346-5

Keywords

Navigation