Skip to main content

Advertisement

Log in

Effects of hydrogen and nitrogen impurities on electronic, structural and optical properties of 2D ZnS graphene based

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ab initio calculations based on density functional theory (DFT) were used to investigate the structural, electronic and optical properties of ZnS graphene based (GB) with N and H atoms as ligands. These studies were conducted using the generalized gradient approximation (GGA) by means of WIEN2k package and revealed how the electronic and optical properties of GB structures of ZnS, including density of electron states, the energy band structure, the dielectric function, the energy loss function, the refractive index, the reflection and absorption rates, are modified by the effects of H and N impurities. Band structure analysis indicated that ZnS GB is a semiconductor with direct band gap (3.4 eV) in Γ direction. Furthermore, it has been found that H (ligand) and N (ligand) atoms that bond to a Zn atom cause magnetic and half-metallic behaviors, and one or two electronic states appeared in the energy gap at down spin for H and N ligands, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Luo X, Cao W, Zhou L (2007) Synthesis and luminescence properties of (Zn, Cd)S: Ag nanocrystals by hydrothermal method. J Lumin 122–123:812

    Article  Google Scholar 

  2. Karar N (2007) Photoluminescence from doped ZnS nanostructures. Solid State Commun 142:261

    Article  Google Scholar 

  3. Antony A, Murali KV, Manoj R, Jayaraj MK (2005) The effect of the pH value on the growth and properties of chemical-bath-deposited ZnS thin films. Mater Chem Phys 90:106

    Article  Google Scholar 

  4. Ludolph B, Malik MA (1998) Novel single molecule precursor routes for the direct synthesis of highly monodispersed quantum dots of cadmium or zinc sulfide or selenide. Chem Commun 17:1849

    Article  Google Scholar 

  5. Zhao Y, Zhang Y, Zhu H, Hadjipanayis GC, Xiao JQ (2004) Low-temperature synthesis of hexagonal (Wurtzite) ZnS nanocrystals. Chem Soc 126:6874

    Article  Google Scholar 

  6. Prè MD, Morrow I, Martin DJ, Mos M, Negro AD, Padovani S, Martucci A (2013) Preparation and characterization of down shifting ZnS:Mn/PMMA nanocomposites for improving photovoltaic silicon solar cell efficiency. Mater Chem Phys 139:531

    Article  Google Scholar 

  7. Yu Z, Leng J, Xue W, Zhang T, Jiang Y, Zhang J, Zhang D (2012) Highly flexible transparent and conductive ZnS/Ag/ZnS multilayer films prepared by ion beam assisted deposition. Appl Surf Sci 258:2270

    Article  Google Scholar 

  8. Chen D, Huang F, Ren G, Zheng M, Wang Y, Lin Z (2010) ZnS nano–architectures: photocatalysis, deactivation and regeneration. Nanoscale 2(10):2062

    Article  Google Scholar 

  9. Krainara Norawit, Limtrakul Jumras, Illas Francesc, Bromley ST (2011) Structural and electronic bistability in ZnS single sheets and single-walled nanotubes. Phys Rev B 83:233305

    Article  Google Scholar 

  10. Scheuschner N, Ochedowski O, Kaulitz A-M, Gillen R, Schleberger M, Maultzsch J (2014) Photoluminescence of freestanding single- and few-layer MoS2. Phys Rev B 89:125406

    Article  Google Scholar 

  11. Topsakal M, Cahangirov S, Bekaroglu E, Ciraci S (2009) First-principles study of zinc oxide honeycomb structures. Phys Rev B 80:235119

    Article  Google Scholar 

  12. Behera H, Mukhopadhyay G (2012) Strain-tunable band parameters of ZnO monolayer in graphene-like honeycomb structure. Phys Lett A 376:3287

    Article  Google Scholar 

  13. Ajmal Khan M, Bouarissa N (2013) Optical and energy-loss spectra of ZnS from ab initio molecular dynamics simulation: temperature effect. Optik 124:5095

    Article  Google Scholar 

  14. Lashgari H, Boochani A, Shekaari A, Solaymani S, Sartipi E, Mendi RT (2016) Electronic and optical properties of 2D graphene-like ZnS: DFT calculations. Appl Surf Sci 369:76

    Article  Google Scholar 

  15. Freeman CL, Claeyssens F, Allan NL, Harding JH (2006) Graphitic nanofilms as precursors to wurtzite films: theory. Phys Rev Lett 96:066102

    Article  Google Scholar 

  16. Zhang S, Ma J (2011) Width- and edge-dependent stability, electronic structures, and magnetic properties of graphene-like and wurtzite ZnS nanoribbons. J Phys Chem C 115:4466

    Article  Google Scholar 

  17. Wang P, Jiang T, Zhu C, Zhai Y, Wang D, Dong S (2010) One-step, solvothermal synthesis of graphene-CdS and graphene-ZnS quantum dot nanocomposites and their interesting photovoltaic properties. Nano Res 3:794

    Article  Google Scholar 

  18. Sookhakian M, Amin YM, Baradaran S, Tajabadi MT, Golsheikh AM, Basirun WJ (2014) A layer-by-layer assembled graphene/zinc sulfide/polypyrrole thin-film electrode via electrophoretic deposition for solar cells. Thin Solid Films 552:204

    Article  Google Scholar 

  19. Fu X, Jiang T, Zhao Q, Yin H (2012) A facile synthesis of graphene–metal (Pb, Zn, Cd, Mn) sulfide composites. J Mater Sci 47:1026. doi:10.1007/s10853-011-5890-0

    Article  Google Scholar 

  20. Zhao J, Yang X (2003) Photocatalytic oxidation for indoor air purification: a literature review. Build Environ 38(5):645

    Article  Google Scholar 

  21. Liu JZ, Yan PX, Yue GH, Chang JB, Qu DM, Zhuo RF (2006) Red light photoluminescence emission from Mn and Cd co-doped ZnS one-dimensional nanostructure. J Phys D Appl Phys 39:2352

    Article  Google Scholar 

  22. Sheng-Zhi L, Jin-Chao L, Xiang-Dong Y, Yan-Feng G, Hai-Quan X (2010) First-principles calculation of ZnS doped with Mn or Fe. Chin J High Press Phys 24:449

    Google Scholar 

  23. Schwarz K, Blaha P (2003) Solid state calculations using WIEN2k. Comput Mater Sci 28:259–273

    Article  Google Scholar 

  24. Zakharov O, Rubio A, Blase X, Cohen ML, Louie SG (1994) Quasiparticle band structures of six II–VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe. Phys Rev B 50:10780

    Article  Google Scholar 

  25. Marinara N, Limtrakul J, Illas F, Bromley ST (2011) Structural and electronic instability in ZnS single sheets and single–walled nanotubes. Phys Rev B 83:233305

    Article  Google Scholar 

  26. Topsakal M, Cahangirov S, Bekaroglu E, Ciraci S (2009) First-principles study of zinc oxide honeycomb structures. Phys Rev B 80:235119

    Article  Google Scholar 

  27. Behera Harihar, Mukhopadhyay Gautam (2012) Strain-tunable band parameters of ZnO monolayer in graphene-like honeycomb structure. Phys Lett A 376:3287

    Article  Google Scholar 

  28. Bouarissa N (2000) The effect of hydrostatic pressure on the electronic and optical properties of InP. Solid State Electron 44:2193

    Article  Google Scholar 

  29. Ajmal Khan M, Bouarissa N (2013) Optical and energy-loss spectra of ZnS from ab initio molecular dynamics simulation: temperature effect. Optik 124:5095

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Boochani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boochani, A., Akhtar, A., Amiri, M. et al. Effects of hydrogen and nitrogen impurities on electronic, structural and optical properties of 2D ZnS graphene based. J Mater Sci 52, 10393–10405 (2017). https://doi.org/10.1007/s10853-017-1198-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1198-z

Keywords

Navigation