Skip to main content
Log in

Structural morphological and optical properties of P3HT/CdSe/WS2 ternary composites for hybrid organic/inorganic photovoltaics

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The development of complete organic/inorganic hybrid solar cells (HOSCs) is strictly related to the achievement of appealing electrical performances. In this context, the optimization of device architectures and of the active material’s structural and morphological properties is crucial. In this work, such highly critical issues are addressed for a novel hybrid nanocomposite: tungsten disulfide nanotubes (WS2 NTs) and cadmium selenide quantum dots (CdSe QDs) embedded into a Poly (3-hexylthiophene-2,5-diyl) (P3HT) polymeric matrix. Both binary and ternary compounds are produced and investigated by means of an unconventional energy-dispersive X-ray diffraction technique combined with atomic force microscopy and Raman spectroscopy. Additionally, the effects of low-temperature thermal treatments on the nanocomposite’s structure and morphology are disclosed, unraveling their connection of these features to the optical response of the materials, investigated by UV–Vis spectroscopy. Promising results are obtained in terms of enhanced crystallinity, phase separation, and the possibility of decorating the WS2 NTs with CdSe dots is demonstrated, opening new perspectives for further development of complete HOSCs based on this innovative ternary system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ahmad J, Bazaka K, Anderson LJ, White RD, Jacob MV (2013) Materials and methods for encapsulation of OPV: a review. Renew Sustain Energy Rev 27:104–117

    Article  Google Scholar 

  2. El Chaara L, Lamonta LA, El Zeinb N (2011) Review of photovoltaic technologies. Renew Sustain Energy Rev 15:2165–2175

    Article  Google Scholar 

  3. Li G, Zhu R, Yang Y (2012) Polymer solar cells. Nat Photon 6:153–161

    Article  Google Scholar 

  4. Paci B, Generosi A, Rossi Albertini V, Perfetti P, De Bettignies R (2009) The role of C60 barrier layer in improving the performances of efficient polymer-based photovoltaic devices: an AFM/EDXR time-resolved study. J Phys Chem C 113:19740–19747

    Article  Google Scholar 

  5. Hardin BE, Snaith HJ, McGehee MD (2012) The renaissance of dye-sensitized solar cells. Nat Photon 6:162–169

    Article  Google Scholar 

  6. Paci B, Kakavelakis G, Generosi A, Rossi Albertini V, Wright J, Ferrero C, Konios D, Stratakis E, Kymakis E (2015) Stability enhancement of organic photovoltaic devices utilizing partially reduced graphene oxide as the hole transport layer: nanoscale insight into structural/interfacial properties and aging effects. RSC Adv 5:106930–106940

    Article  Google Scholar 

  7. Ramar M, Suman CK, Manimozhi R, Ahamada R, Srivastava R (2014) Study of Schottky contact in binary and ternary hybrid CdSe quantum dot solar cells. RSC Adv 4:32651–32657

    Article  Google Scholar 

  8. Kim HD, Ohkita H, Benten H, Ito S (2014) Ternary blend hybrid solar cells incorporating wide and narrow bandgap polymers. ACS Appl Mater Interfaces 6:17551–17555

    Article  Google Scholar 

  9. Battaglia C, Cuevas A, De Wolf S (2016) High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ Sci 9:1552–1576

    Article  Google Scholar 

  10. Yang G, Tao H, Qin P, Ke W, Fang G (2016) Recent progress in electron transport layers for efficient perovskite solar cells. J Mater Chem A 4:3970–3990

    Article  Google Scholar 

  11. Tenne R, Margulis L, Genut M, Hodes G (1992) Polyhedral and cylindrical structures of tungsten disulphide. Nature 360:444–446

    Article  Google Scholar 

  12. Kaplan-Ashiri I, Cohen SR, Gartsman K, Ivanovskaya V, Heine T, Seifert G, Wiesel I, Wagner HD, Tenne R (2004) Mechanical behavior of individual WS2 nanotubes. J Mater Res 19:454–459

    Article  Google Scholar 

  13. Tang DM, Wei X, Wang MS, Kawamoto N, Bando Y, Zhi C, Mitome M, Zak A, Tenne R, Golberg D (2013) Revealing the anomalous tensile properties of WS2 nanotubes by in situ transmission electron microscopy. Nano Lett 13(3):1034–1040

    Article  Google Scholar 

  14. Zak A, Sallacan-Ecker L, Margolin A, Genut M, Tenne R (2009) Insight into the growth mechanism of WS2 nanotubes in the scale-up fluidized-bed reactor. Nano 4:91–98

    Article  Google Scholar 

  15. Milošević I, Nikolić B, Dobardžić E, Damnjanović M (2007) Electronic properties and optical spectra of MoS2 and WS2 nanotubes. Phys Rev B 76:233414

  16. Ghorbani-Asl M, Zibouche N, Wahiduzzaman M, Oliveira AF, Kuc A, Heine T (2013) Electromechanics in MoS2 and WS2: nanotubes versus monolayers. Sci Rep 3:2961

  17. Kumar S, Borriello C, Nenna G, Rosentsveig R, Di Luccio T (2012) Dispersion of WS2 nanotubes and nanoparticles into conducting polymer matrices for application as LED materials. Eur Phys J B 85:160

  18. Bruno A, Borriello C, Haque SA, Minarini C, Di Luccio T (2014) Ternary hybrid systems of P3HT–CdSe–WS2 nanotubes for photovoltaic applications. Phys Chem Chem Phys 16:17998–18003

    Article  Google Scholar 

  19. Di Luccio T, Borriello C, Kumar S, Nenna G (2011) Charge transfer properties of surface-treated WS2 nanotubes and fullerene-like nanoparticles. Sens and Transducer J 12:26–32

    Google Scholar 

  20. Unalan HE, Yang Y, Zhang Y, Hiralal P, Kuo D, Dalal S, Butler T, Cha SN, Jang JE, Chremmou K, Lentaris G, Wei D, Rosentsveig R, Suzuki K, Matsumoto H, Minagawa M, Hayashi Y, Chhowalla M, Tanioka A, Milne WI, Tenne R, Amaratunga GAJ (2008) ZnO nanowire and WS2 nanotube electronics. IEEE Trans Electron Dev 55:2988–3000

    Article  Google Scholar 

  21. Di Luccio T, Borriello C, Bruno A, Maglione MG, Minarini C, Nenna G (2013) Preparation and characterization of novel nanocomposites of WS2 nanotubes and polyfluorene conductive polymer. Phys Stat Sol A 210:2278–2283

    Article  Google Scholar 

  22. Tenne R, Rosentsveig R, Zak A (2013) Inorganic nanotubes and fullerene-like nanoparticles: synthesis, mechanical properties, and applications. Phys Stat Sol 210:2253–2258

    Google Scholar 

  23. Han LL, Qin DH, Jiang X, Liu YS, Wang L, Chen JW, Cao Y (2006) Hybrid photovoltaic devices based on chalcogenide nanostructures. Nanotechnology 17:4736–4742

    Article  Google Scholar 

  24. Hammer NI, Emrick T, Barnes MD (2007) Quantum dots coordinated with conjugated organic ligands: new nanomaterials with novel photophysics. Nanoscale Res Lett 2:282–290

    Article  Google Scholar 

  25. Jeltsch KF, Schadel M, Bonekamp JB, Niyamakom P, Rauscher F, Lademann HWA, Dumsch I, Allard S, Scherf U, Meerholz K (2012) Efficiency enhanced hybrid solar cells using a blend of quantum dots and nanorods. Adv Funct Mater 22:397–404

    Article  Google Scholar 

  26. Kanemoto R, Anas A, Matsumoto Y, Ueji R, Itoh T, Baba Y, Nakanishi S, Shikawa M, Biju V (2008) Relations between dewetting of polymer thin films and phase-separation of encompassed Quantum dots. J Phys Chem C 112:8184–8191

    Article  Google Scholar 

  27. Lu HW, Bao DD, Penchev M, Ghazinejad M, Vullev VI, Ozkan CS, Ozkan M (2010) Pyridine-coated lead sulfide quantum dots for polymer hybrid photovoltaic devices. Adv Sci Lett 3:101–109

    Article  Google Scholar 

  28. Guchhait A, Rath AK, Pal AJ (2011) To make polymer: quantum dot hybrid solar cells NIR-active by increasing diameter of PbS nanoparticles. Sol En Mat Sol Cell 95:651–656

    Article  Google Scholar 

  29. Wang ZL (2000) Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. Phys Chem 104:1153–1175

    Google Scholar 

  30. Trung NN, Luu QP, Son BT, Sinh LH, Bae JY (2012) Preparation and characterization of silicone resin nanocomposite containing CdSe/ZnS quantum dots. Polym Compos 33:1786–1791

    Article  Google Scholar 

  31. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295:2425–2457

    Article  Google Scholar 

  32. Holder E, Tessler N, Rogach AL (2008) Hybrid nanocomposite materials with organic and inorganic components for opto-electronic devices. J Mater Chem 18:1064–1078

    Article  Google Scholar 

  33. Dong Y, Lu J, Yan F, Xu Q (2009) Optical study of poly(3-decylthiophene)/CdS nanocomposites. Polym Compos 30(6):723–730

    Article  Google Scholar 

  34. Borriello C, Masala S, Bizzarro V, Nenna G, Re M, Pesce E, Minarini C, Di Luccio T (2011) Electroluminescence properties of poly(3-hexylthiophene)–cadmium sulfide nanoparticles grown in situ. J Appl Polym Sci 122:3624–3629

    Article  Google Scholar 

  35. Masala S, Del Gobbo S, Borriello C, Bizzarro V, La Ferrara V, Re M, Pesce E, Minarini C, De Crescenzi M, Di Luccio T (2011) Hybrid polymer-CdS solar cell active layers formed by in situ growth of CdS nanoparticles. J Nanoparticle Res 13:6537–6544

    Article  Google Scholar 

  36. Feng W, Qin C, Shen Y, Li Y, Luo W, An H, Feng Y (2014) A layer-nanostructured assembly of PbS quantum dot/multiwalled carbon nanotube for a high-performance photoswitch. Sci Rep 4:3777

  37. Zheng X-L, Qin W-J, Ling T, Pan C-F, Du X-W (2015) Carbon nanotube reinforced CdSe inverse opal with crack-free structure and high conductivity for photovoltaic applications. Adv Mater Interface 2:1400464

  38. Liu B, Li X-B, Gao Y-J, Li Z-J, Meng Q-Y, Tung C-H, Wu L-Z (2015) A solution-processed mercaptoacetic acid-engineered CdSe quantum dot photocathode for efficient hydrogen production under visible light irradiation. Energy Environ Sci 8:1443–1449

    Article  Google Scholar 

  39. Sreejith S, Hansen R, Joshi H, Kutty RG, Liu Z, Zheng L, Yang J, Zhao Y (2016) Quantum dot decorated aligned carbon nanotube bundles for a performance enhanced photoswitch. Nanoscale 8:8547–8552

    Article  Google Scholar 

  40. Hodes G (1993) Size-quantized nanocrystalline semiconductor films. Isr J Chem 33:95–106

    Article  Google Scholar 

  41. Sasha G, Gary H (1994) Quantum size effects in the study of chemical solution deposition mechanisms of semiconductor films. J Phys Chem 98:5338–5346

    Article  Google Scholar 

  42. Nozik A (2002) Quantum dot solar cells. J Phys E Low Dimens Syst Nanostructure 14:115–120

    Article  Google Scholar 

  43. Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat PV (2008) Quantum dot solar cells. tuning photoresponse through size and shape control of CdSe–TiO2 architecture. JACS 130:4007–4015

    Article  Google Scholar 

  44. Yanab J, Zhou F (2011) TiO2 nanotubes: structure optimization for solar cells. J Mater Chem 21:9406–9418

    Article  Google Scholar 

  45. Reese MO, Morfa AJ, White MS, Kopidakis N, Shaheen SE, Rumbles G, Ginley DS (2008) Pathways for the degradation of organic photovoltaic P3HT:PCBM based devices. Sol Energy Mat Sol Cell 92:746–752

    Article  Google Scholar 

  46. Paci B, Generosi A, Generosi R, Bailo D, Rossi Albertini V (2009) Joint time-resolved AFM/EDXR techniques for thin films morphological in situ studies. Chem Phys Lett 483:159–163

    Article  Google Scholar 

  47. Paci B, Generosi A, Rossi Albertini V, de Bettignes R (2013) Improved structural/morphological durability of poly(3-hexylthiophene) nanofibers photoactive layers for organic solar cells. Chem Phys Lett 587:50–55

    Article  Google Scholar 

  48. Rossi Albertini V, Paci B, Generosi A (2006) The Energy Dispersive X-ray Reflectometry as a unique laboratory tool to investigate morphological properties of layered systems and devices. J Phys D Appl Phys 39:461–486

    Article  Google Scholar 

  49. Zhua YQ, Hsu WK, Terrones H, Grobert N, Chang BH, Terrones M, Wei BQ, Kroto HW, Walton DRM, Boothroyd CB, Kinloch I, Chen GZ, Windle AH, Fray DJ (2000) Morphology, structure and growth of WS2 nanotubes. J Mater Chem 10:2570–2577

    Article  Google Scholar 

  50. Ma C, Zhou M, Wu D, Feng M, Liu X, Huo P, Shi W, Ma Z, Yan Y (2015) One-step hydrothermal synthesis of cobalt and potassium codoped CdSe quantum dots with high visible light photocatalytic activity. Cryst Eng Comm 17:1701–1709

    Article  Google Scholar 

  51. Neeleshwar S, Chen CL, Tsai CB, Chen YY, Chen CC, Shyu SG, Seehra MS (2005) Size-dependent properties of CdSe quantum dots. Phys Rev B 71:201307

    Article  Google Scholar 

  52. Paci B, Generosi A, Bailo D, Caminiti R, De Bettignies R, Albertini VR (2011) Structural/morphological monitoring approach to stability and durability issues of photoactive films for organic solar cells. Chem Phys Lett 504:216–220

    Article  Google Scholar 

  53. Vongsaysy U, Bassani DM, Servant L, Pavageau B, Wantz G, Aziz H (2014) Formulation strategies for optimizing the morphology of polymeric bulk heterojunction organic solar cells: a brief review. J Photon Energy 4(1):040998

    Article  Google Scholar 

  54. Paci B, Generosi A, Bailo D, Rossi Albertini V, de Bettignes R (2010) Discriminating bulk, surface and interface aging effects in polymer-based active materials for efficient photovoltaic devices. Chem Phys Lett 494:69–74

    Article  Google Scholar 

  55. Gomez ED, Barteau KP, Wang H, Toneyc MF, Loo Y-L (2011) Correlating the scattered intensities of P3HT and PCBM to the current densities of polymer solar cells. Chem Commun 47:436–438

    Article  Google Scholar 

  56. Scavia G, Agostinelli E, Laureti S, Varvaro G, Kaciulis S, Mezzi A, Paci B, Generosi A, Rossi Albertini V (2006) Evolution of the Pt layer deposited on MgO (001) by PLD as a function of the deposition paramenters: a scanning tunneling microscopy and energy dispersive X-ray diffactrometry/reflectometry study. J Phys Chem B 110:5529–5536

    Article  Google Scholar 

  57. Naffakh M, Marco C, Ellis G (2014) Biopolymer nanocomposites based on poly(hydroxybutyrate-co- hydroxyvalerate) and WS2 inorganic nanotubes. Cryst Eng Comm 16:5062–5072

    Article  Google Scholar 

  58. Naffakh M, Marco C, Ellis G (2014) Inorganic WS2 nanotubes that improve the crystallization behavior of poly(3-hydroxybutyrate). Cryst Eng Comm 16:1126–1135

    Article  Google Scholar 

  59. Tan F, Qu S, Jiang Q, Chen C, Zhang W, Wang Z (2013) Nanotetrapods: quantum dot hybrid for bulk heterojunction solar cells. Nanoscale Res Lett 8(1):434

    Article  Google Scholar 

  60. Tan F, Qu S, Zhang X, Liu K, Wang Z (2013) Synthesis of silver quantum dots decorated TiO2 nanotubes and their incorporation in organic hybrid solar cells. J Nanopart Res 15(8):1844–1849

    Article  Google Scholar 

  61. Torchynska TV, Diaz Cano A, Dybiec M, Ostapenko S, Morales Rodrigez M, Jiménez-Sandoval S, Vorobiev Y, Phelan C, Zajac A, Zhukov T, Sellers T (2007) Raman scattering and SEM study of bio-conjugated core-shell CdSe/ZnS quantum dots. Phys Stat Solidi C 4:241–243

    Article  Google Scholar 

  62. Virsek M, Jesih A, Milosevic I, Damnjanovic M, Remskar M (2007) Raman scattering of the MoS2 and WS2 single nanotubes. Surf Sci 601:2868–2872

    Article  Google Scholar 

  63. Krause M, Virsek M, Remskar M, Salacan N, Fleischer N, Chen LH, Hatto P, Kolitsch A, Moller W (2009) Diameter and morphology dependent raman signatures of WS2 nanostructures. Chem Phys Chem 10:2221–2225

    Article  Google Scholar 

  64. Reddy CS, Zak A, Zussman E (2011) WS2 nanotubes embedded in PMMA nanofibers as energy absorptive material. J Mater Chem 21:16086–16093

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof. Dinorah Haber for her critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Paci.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 790 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Generosi, A., Guaragno, M., Di Luccio, T. et al. Structural morphological and optical properties of P3HT/CdSe/WS2 ternary composites for hybrid organic/inorganic photovoltaics. J Mater Sci 52, 9573–9583 (2017). https://doi.org/10.1007/s10853-017-1147-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1147-x

Keywords

Navigation