Skip to main content

Advertisement

Log in

High-concentration shear-exfoliated colloidal dispersion of surfactant–polymer-stabilized few-layer graphene sheets

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To exploit the remarkable properties of graphene fully, an efficient large-scale production method is required. Sonication-assisted liquid-phase exfoliation of graphite, for example, has been extensively used for the production of few-layer graphene sheets, but suffers from low efficiency and high energy consumption and thus is not viable for large-scale production. Here we demonstrate a method that is more efficient and has higher scalability potential than sonication. We show that a few-layer graphene at high concentration of up to 1.1 mg ml−1 can be achieved in aqueous-based medium by highly efficient shear exfoliation of graphite in a processing time of just 2 h. The exfoliation process was carried out in a commercially available high shear colloidal mixer fixed with a three-stage rotor–stator shear generator for optimum exfoliation with a continuous circulation system. The high efficiency and a significant improvement over sonication adopting our method were demonstrated by the fact that the conversion to few-layer graphene sheets produced after just 30 min by shear exfoliation required, in contrast, 100s of hours by sonication. High-concentration defect-free few-layer graphene in aqueous medium, produced at short shearing time, demonstrates that this method has high potential for large-scale production. The produced graphene films exhibit additionally a high electrical conductivity of about 29000 S m−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  2. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355

    Article  Google Scholar 

  3. Morozov SV, Novoselov KS, Katsnelson MI, Schedin F, Elias DC, Jaszczak JA, Geim AK (2008) Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 100:016602. doi:10.1103/PhysRevLett.100.016602

    Article  Google Scholar 

  4. Dürkop T, Getty SA, Cobas E, Fuhrer MS (2004) Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett 4:35–39

    Article  Google Scholar 

  5. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  Google Scholar 

  6. Peigney A, Laurent C, Flahaut E, Bacsa RR, Rousset A (2001) Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39:507–514

    Article  Google Scholar 

  7. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  Google Scholar 

  8. Bunch JS, Verbridge SS, Alden JS, van der Zande AM, Parpia JM, Craighead HG, McEuen PL (2008) Impermeable atomic membranes from graphene sheets. Nano Lett 8:2458–2462

    Article  Google Scholar 

  9. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    Article  Google Scholar 

  10. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541

    Article  Google Scholar 

  11. Wei D, Kivioja J (2013) Graphene for energy solutions and its industrialization. Nanoscale 5:10108–10126

    Article  Google Scholar 

  12. Zhao X, Zhang Q, Chen D, Lu P (2010) Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43:2357–2363

    Article  Google Scholar 

  13. Bao Q (2010) Graphene–polymer nanofiber membrane for ultrafast photonics. Adv Funct Mater 20:782–791

    Article  Google Scholar 

  14. Hu K, Kulkarni DD, Choi I, Tsukruk VV (2014) Graphene–polymer nanocomposites for structural and functional applications. Prog Polym Sci 39:1934–1972

    Article  Google Scholar 

  15. Istrate OM, Paton KR, Khan U, O’Neill A, Bell AP, Coleman JN (2014) Reinforcement in melt-processed polymer–graphene composites at extremely low graphene loading level. Carbon 78:243–249

    Article  Google Scholar 

  16. Keeley GP, O’Neill A, McEvoy N, Peltekis N, Coleman JN, Duesberg GS (2010) Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene. J Mater Chem 20:7864–7869

    Article  Google Scholar 

  17. Tian H, Shu Y, Cui YL, Mi WT, Yang Y, Xie D, Ren TL (2014) Scalable fabrication of high-performance and flexible graphene strain sensors. Nanoscale 6:699–705

    Article  Google Scholar 

  18. Kavan L, Yum JH, Gratzel M (2011) Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets. ACS Nano 5:165–172

    Article  Google Scholar 

  19. Torrisi F, Hasan T, Wu W, Sun Z, Lombardo A, Kulmala TS, Hsieh GW, Jung S, Bonaccorso F, Paul PJ, Chu D, Ferrari AC (2012) Inkjet-printed graphene electronics. ACS Nano 6:2992–3006

    Article  Google Scholar 

  20. Gao Y, Shi W, Wang W, Leng Y, Zhao Y (2014) Inkjet printing patterns of highly conductive pristine graphene on flexible substrates. Ind Eng Chem Res 53:16777–16784

    Article  Google Scholar 

  21. Scheuermann GM, Rumi L, Steurer P, Bannwarth W, Mulhaupt R (2009) Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki–Miyaura coupling reaction. J Am Chem Soc 131:8262–8270

    Article  Google Scholar 

  22. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102:10451–10453

    Article  Google Scholar 

  23. Hu B, Ago H, Ito Y, Kawahara K, Tsuji M, Magome E, Sumitani K, Mizuta N, Ikeda K-, Mizuno S (2012) Epitaxial growth of large-area single-layer graphene over Cu(1 1 1)/sapphire by atmospheric pressure CVD. Carbon 50:57–65

    Article  Google Scholar 

  24. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1196

    Article  Google Scholar 

  25. Chen B, Huang H, Ma X, Huang L, Zhang Z, Peng LM (2014) How good can CVD-grown monolayer graphene be? Nanoscale 6:15255–15261

    Article  Google Scholar 

  26. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224

    Article  Google Scholar 

  27. Park S, An J, Jung I, Piner RD, An SJ, Li X, Velamakanni A, Ruoff RS (2009) Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9:1593–1597

    Article  Google Scholar 

  28. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  Google Scholar 

  29. Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2:463–470

    Article  Google Scholar 

  30. Bonaccorso F, Lombardo A, Hasan T, Sun Z, Colombo L, Ferrari AC (2012) Production and processing of graphene and 2d crystals. Mater Today 15:564–589

    Article  Google Scholar 

  31. Phiri J, Gane P, Maloney TC (2017) General overview of graphene: production, properties and application in polymer composites. Mater Sci Eng B 215:9–28

    Article  Google Scholar 

  32. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568

    Article  Google Scholar 

  33. Wajid AS, Das S, Irin F, Ahmed HST, Shelburne JL, Parviz D, Fullerton RJ, Jankowski AF, Hedden RC, Green MJ (2012) Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production. Carbon 50:526–534

    Article  Google Scholar 

  34. Bourlinos AB, Georgakilas V, Zboril R, Steriotis TA, Stubos AK, Trapalis C (2009) Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes. Solid State Commun 149:2172–2176

    Article  Google Scholar 

  35. Lotya M, King PJ, Khan U, De S, Coleman JN (2010) High-concentration, surfactant-stabilized graphene dispersions. ACS Nano 4:3155–3162

    Article  Google Scholar 

  36. Guardia L, Fernández-Merino MJ, Paredes JI, Solís-Fernández P, Villar-Rodil S, Martínez-Alonso A, Tascón JMD (2011) High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon 49:1653–1662

    Article  Google Scholar 

  37. Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang Z, McGovern IT, Duesberg GS, Coleman JN (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131:3611–3620

    Article  Google Scholar 

  38. Notley SM (2012) Highly concentrated aqueous suspensions of graphene through ultrasonic exfoliation with continuous surfactant addition. Langmuir 28:14110–14113

    Article  Google Scholar 

  39. Xu J, Dang DK, Tran VT, Liu X, Chung JS, Hur SH, Choi WM, Kim EJ, Kohl PA (2014) Liquid-phase exfoliation of graphene in organic solvents with addition of naphthalene. J Colloid Interface Sci 418:37–42

    Article  Google Scholar 

  40. Zhu L, Zhao X, Li Y, Yu X, Li C, Zhang Q (2013) High-quality production of graphene by liquid-phase exfoliation of expanded graphite. Mater Chem Phys 137:984–990

    Article  Google Scholar 

  41. Paton KR, Varrla E, Backes C, Smith RJ, Khan U, O’Neill A, Boland C, Lotya M, Istrate OM, King P, Higgins T, Barwich S, May P, Puczkarski P, Ahmed I, Moebius M, Pettersson H, Long E, Coelho J, O’Brien SE, McGuire EK, Sanchez BM, Duesberg GS, McEvoy N, Pennycook TJ, Downing C, Crossley A, Nicolosi V, Coleman JN (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13:624–630

    Article  Google Scholar 

  42. Yi M, Shen Z (2014) Kitchen blender for producing high-quality few-layer graphene. Carbon 78:622–626

    Article  Google Scholar 

  43. Walker GF, Garrett WG (1967) Chemical exfoliation of vermiculite and the production of colloidal dispersions. Science 156:385–387

    Article  Google Scholar 

  44. Shinde DB, Brenker J, Easton CD, Tabor RF, Neild A, Majumder M (2016) Shear assisted electrochemical exfoliation of graphite–graphene. Langmuir 32:3552–3559

    Article  Google Scholar 

  45. Chen X, Dobson JF, Raston CL (2012) Vortex fluidic exfoliation of graphite and boron nitride. Chem Commun 48:3703–3705

    Article  Google Scholar 

  46. Li L, Nicholas RJ, Chen C, Darton RC, Baker SC (2005) Comparative study of photoluminescence of single-walled carbon nanotubes wrapped with sodium dodecyl sulfate, surfactin and polyvinylpyrrolidone. Nanotechnology 16:S202–S205

    Article  Google Scholar 

  47. Hertel T, Hagen A, Talalaev V, Arnold K, Hennrich F, Kappes M, Rosenthal S, McBride J, Ulbricht H, Flahaut E (2005) Spectroscopy of single- and double-wall carbon nanotubes in different environments. Nano Lett 5:511–514

    Article  Google Scholar 

  48. Sun Z, Nicolosi V, Rickard D, Bergin SD, Aherne D, Coleman JN (2008) Quantitative evaluation of surfactant-stabilized single-walled carbon nanotubes: dispersion quality and its correlation with zeta potential. J Phys Chem C 112:10692–10699

    Article  Google Scholar 

  49. Lin S, Blankschtein D (2010) Role of the bile salt surfactant sodium cholate in enhancing the aqueous dispersion stability of single-walled carbon nanotubes: a molecular dynamics simulation study. J Phys Chem B 114:15616–15625

    Article  Google Scholar 

  50. Backes C, Paton KR, Hanlon D, Yuan S, Katsnelson MI, Houston J, Smith RJ, McCloskey D, Donegan JF, Coleman JN (2016) Spectroscopic metrics allow in situ measurement of mean size and thickness of liquid-exfoliated few-layer graphene nanosheets. Nanoscale 8:4311–4323

    Article  Google Scholar 

  51. Khan U, O’Neill A, Lotya M, De S, Coleman JN (2010) High-concentration solvent exfoliation of graphene. Small 6:864–871

    Article  Google Scholar 

  52. Green AA, Hersam MC (2009) Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett 9:4031–4036

    Article  Google Scholar 

  53. Xu L, McGraw J, Gao F, Grundy M, Ye Z, Gu Z, Shepherd JL (2013) Production of high-concentration graphene dispersions in low-boiling-point organic solvents by liquid-phase noncovalent exfoliation of graphite with a hyperbranched polyethylene and formation of graphene/ethylene copolymer composites. J Phys Chem C 117:10730–10742

    Article  Google Scholar 

  54. Hernandez Y, Lotya M, Rickard D, Bergin SD, Coleman JN (2010) Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir 26:3208–3213

    Article  Google Scholar 

  55. Wei Y, Sun Z (2015) Liquid-phase exfoliation of graphite for mass production of pristine few-layer graphene. Curr Opin Colloid Interface Sci 20:311–321

    Article  Google Scholar 

  56. Wang X, Zhi L, Tsao N, Tomović Ž, Li J, Müllen K (2008) Transparent carbon films as electrodes in organic solar cells. Angew Chem Int Ed Engl 47:2990–2992

    Article  Google Scholar 

  57. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105

    Article  Google Scholar 

  58. Fernández-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S, Solís-Fernández P, Martínez-Alonso A, Tascón JMD (2010) Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem C 114:6426–6432

    Article  Google Scholar 

  59. Lee S, Lim S, Lim E, Lee KK (2010) Synthesis of aqueous dispersion of graphenes via reduction of graphite oxide in the solution of conductive polymer. J Phys Chem Solids 71:483–486

    Article  Google Scholar 

  60. Gayathri S, Jayabal P, Kottaisamy M, Ramakrishnan V (2014) Synthesis of few layer graphene by direct exfoliation of graphite and a Raman spectroscopic study. AIP Adv 4:027116

    Article  Google Scholar 

  61. Buzaglo M, Shtein M, Kober S, Lovrincic R, Vilan A, Regev O (2013) Critical parameters in exfoliating graphite into graphene. Phys Chem Chem Phys 15:4428–4435

    Article  Google Scholar 

  62. Hamilton CE, Lomeda JR, Sun Z, Tour JM, Barron AR (2009) High-yield organic dispersions of unfunctionalized graphene. Nano Lett 9:3460–3462

    Article  Google Scholar 

  63. Shahil KM, Balandin AA (2012) Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett 12:861–867

    Article  Google Scholar 

  64. O’Neill A, Khan U, Nirmalraj PN, Boland J, Coleman JN (2011) Graphene dispersion and exfoliation in low boiling point solvents. J Phys Chem C 115:5422–5428

    Article  Google Scholar 

  65. Haar S, Gemayel M, Shin Y, Melinte G, Squillaci MA, Ersen O, Casiraghi C, Ciesielski A, Samori P (2015) Enhancing the liquid-phase exfoliation of graphene in organic solvents upon addition of n-octylbenzene. Sci Rep 5:16684

    Article  Google Scholar 

  66. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401. doi:10.1103/PhysRevLett.97.187401

    Article  Google Scholar 

  67. Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473:51–87

    Article  Google Scholar 

  68. Yoon D, Moon H, Cheong H, Choi J, Choi J, Park B (2009) Variations in the Raman spectrum as a function of the number of graphene layers. J Korean Phys Soc 55:1299–1303

    Article  Google Scholar 

  69. Gruneis A, Attaccalite C, Wirtz L, Shiozawa H, Saito R, Pichler T, Rubio A (2008) Tight-binding description of the quasiparticle dispersion of graphite and few-layer graphene 78:205425

    Google Scholar 

  70. Hao Y, Wang Y, Wang L, Ni Z, Wang Z, Wang R, Koo CK, Shen Z, Thong JTL (2010) Probing layer number and stacking order of few-layer graphene by Raman. Spectroscopy 6:195–200

    Google Scholar 

  71. Casiraghi C, Pisana S, Novoselov KS, Geim AK, Ferrari AC (2007) Raman fingerprint of charged impurities in graphene. Appl Phys Lett 91:233108

    Article  Google Scholar 

  72. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107

    Article  Google Scholar 

  73. Casiraghi C, Hartschuh A, Qian H, Piscanec S, Georgi C, Fasoli A, Novoselov KS, Basko DM, Ferrari AC (2009) Raman spectroscopy of graphene edges. Nano Lett 9:1433–1441

    Article  Google Scholar 

  74. Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC (2006) Solution properties of graphite and graphene. J Am Chem Soc 128:7720–7721

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate financial support from Omya International AG and also support from the Finnish Academy, POROFIBRE Project (No. 279255). This work made use of the Aalto University Nanomicroscopy Center (Aalto-NMC) for SEM imaging.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Josphat Phiri or Thad C. Maloney.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phiri, J., Gane, P. & Maloney, T.C. High-concentration shear-exfoliated colloidal dispersion of surfactant–polymer-stabilized few-layer graphene sheets. J Mater Sci 52, 8321–8337 (2017). https://doi.org/10.1007/s10853-017-1049-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1049-y

Keywords

Navigation