Skip to main content
Log in

Vacancy-mediated ferromagnetism in Co-implanted ZnO studied using a slow positron beam

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Co\(^+\) ions with multiple energies from 50 to 380 keV were implanted into ZnO single crystals up to a total dose of \(1.25\times 10^{17}\,\hbox {cm}^2\). The implanted samples were annealed in open air for 30 min between 200 and 1100 \(^{\circ }\)C. All the samples before and after implantation and annealing were characterized by X-ray diffraction (XRD), Raman scattering and positron annihilation measurements. XRD and Raman scattering measurements indicate that Co implantation induces severe lattice damage, and after annealing the damage recovers gradually. No Co clusters or Co-related second phase was observed in the implanted samples. Doppler broadening of positron annihilation radiation measurements using a slow positron beam reveals a large number of vacancy clusters introduced by Co implantation. After annealing up to 1000 \(^{\circ }\)C, almost all the defects induced by implantation are removed. The implanted samples show clear ferromagnetism measured at 5 K. It shows very slight decrease after annealing at 700 \(^{\circ }\)C and becomes much weaker after annealing at 1000 \(^{\circ }\)C. The origin of ferromagnetism is most probably due to substitution of Co\(^+\) ions at Zn lattice sites. However, it is apparent that the decrease in magnetization after annealing is consistent with the vacancy recovery process, indicating that the ferromagnetism in Co-implanted ZnO is mediated by defects such as Zn vacancy (V\(_{Zn}\)) or vacancy clusters. First principles calculations also support that Zn-related monovacancies and vacancy clusters can enhance the ferromagnetism in Co-doped ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Chambers SA (2002) A potential role in spintronics. Mater Today 5:34–39

    Article  Google Scholar 

  2. Punnoose A, Reddy KM, Hays J, Thurber A (2006) Magnetic gas sensing using a dilute magnetic semiconductor. Appl Phys Lett 89:112509

    Article  Google Scholar 

  3. Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D (2000) Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287:1019–1022

    Article  Google Scholar 

  4. Pearton SJ, Abernathy CR, Overberg ME, Thaler GT, Norton DP, Theodoropoulou N, Hebard AF, Park YD, Ren F, Kim J (2003) Wide band gap ferromagnetic semiconductors and oxides. J Appl Phys 93:1–13

    Article  Google Scholar 

  5. Alaria J, Bieber H, Colis S, Schmerber G, Dinia A (2006) Absence of ferromagnetism in Al-doped Zn0.9Co0.10O diluted magnetic semiconductors. Appl Phys Lett 88:112503

    Article  Google Scholar 

  6. Theodoropoulou N, Hebard AF, Overberg ME, Abernathy CR, Pearton SJ, Chu SNG, Wilson RG (2001) Magnetic and structural properties of Mn-implanted GaN. Appl Phys Lett 78:3475–3477

    Article  Google Scholar 

  7. Majid A, Sharif R, Husnain G, Ali A (2009) Annealing effects on the structural optical and magnetic properties of Mn implanted GaN. J Phys D Appl Phys 42:135401–135409

    Article  Google Scholar 

  8. Sharma VK, Varma GD (2009) Effect of Al and Sb doping on the magnetic properties of ZnMnO and ZnCoO. J Appl Phys 105:07C510

    Article  Google Scholar 

  9. Ueda K, Tabata H, Kawai T (2001) Magnetic and electric properties of transition-metal-doped ZnO films. Appl Phys Lett 79:988–990

    Article  Google Scholar 

  10. Schwartz DA, Gamelin DR (2004) Reversible 300 K ferromagnetic ordering in a diluted magnetic semiconductor. Adv Mater 16:2115–2119

    Article  Google Scholar 

  11. Wang Q, Sun Q, Chen G, Kawazoe Y, Jena P (2008) Vacancy-induced magnetism in ZnO thin films and nanowires. Phys Rev B Condens Matter 77:205411

    Article  Google Scholar 

  12. Zuo X, Yoon SD, Yang A, Duan WH, Vittoria C, Harris VG (2009) Ferromagnetism in pure wurtzite zinc oxide. J Appl Phys 105:07C508

    Article  Google Scholar 

  13. Gao D, Zhang Z, Fu J, Xu Y, Qi J, Xue D (2009) Room temperature ferromagnetism of pure ZnO nanoparticles. J Appl Phys 105:113928

    Article  Google Scholar 

  14. Liu W, Li W, Hu Z, Tang Z, Tang X (2011) Effect of oxygen defects on ferromagnetic of undoped ZnO. J Appl Phys 110:123911

    Article  Google Scholar 

  15. Zhan P, Xie Z, Li Z, Wang W, Zhang Z, Li Z, Cheng G, Zhang P, Wang B, Cao X (2013) Origin of the defects-induced ferromagnetism in un-doped ZnO single crystals. Appl Phys Lett 102:071914

    Article  Google Scholar 

  16. Hsu HS, Huang JCA, Huang YH, Liao YF (2006) Evidence of oxygen vacancy enhanced room-temperature ferromagnetism in Co-doped ZnO. Appl Phys Lett 88:242507

    Article  Google Scholar 

  17. Yan WS, Sun Z, Liu Q, Li Z, Pan Z, Wang J, Wei S, Wang D, Zhou Y, Zhang X (2007) Zn vacancy induced room-temperature ferromagnetism in Mn-doped ZnO. Appl Phys Lett 91:062113

    Article  Google Scholar 

  18. Liu EZ, Jiang JZ (2010) O-vacancy-mediated spin-spin interaction in Co-doped ZnO: first-principles total-energy calculations. J Appl Phys 107:023909

    Article  Google Scholar 

  19. Yan WS, Jiang QH, Sun ZH, Yao T, Hu FC, Wei SQ (2010) Determination of the role of O vacancy in Co:ZnO magnetic film. J Appl Phys 108:013901

    Article  Google Scholar 

  20. Gu H, Zhang W, Xu Y, Yan M (2012) Effect of oxygen deficiency on room temperature ferromagnetism in Co doped ZnO. Appl Phys Lett 100:202401

    Article  Google Scholar 

  21. Liu WJ, Tang XD, Tang Z (2013) Effect of oxygen defects on ferromagnetism of Mn doped ZnO. J Appl Phys 114:123911

    Article  Google Scholar 

  22. Ren HT, Xiang G, Gu G, Zhang X (2014) Enhancement of ferromagnetism of ZnO: Co nanocrystals by post-annealing treatment: the role of oxygen interstitials and zinc vacancies. Mater Lett 122:256–260

    Article  Google Scholar 

  23. Simimol A, Anappara AA, Greulich-Weber S, Chowdhury P, Barshilia HC (2015) Enhanced room temperature ferromagnetism in electrodeposited Co-doped ZnO nanostructured thin films by controlling the oxygen vacancy defects. J Appl Phys 117:214310

    Article  Google Scholar 

  24. Shao Q, Wang C, Zapien JA, Leung CW, Ruotolo A (2015) Ferromagnetism in Ti-doped ZnO thin films. J Appl Phys 117:17B908

    Article  Google Scholar 

  25. Li XL, Wang ZL, Qin XF, Wu HS, Xu XH, Gehring GA (2008) Enhancement of magnetic moment of Co-doped ZnO films by postannealing in vacuum. J Appl Phys 103:023911

    Article  Google Scholar 

  26. Lee HJ, Jeong SY, Cho CR, Park CH (2002) Study of diluted magnetic semiconductor: Co-doped ZnO. Appl Phys Lett 81:4020–4022

    Article  Google Scholar 

  27. Rode K, Anane A, Mattana R, Contour JP, Durand O, Lebourgeois R (2003) Magnetic semiconductors based on cobalt substituted ZnO. J Appl Phys 93:7676–7678

    Article  Google Scholar 

  28. Lawes G, Risbud AS, Ramire AP, Seshadri R (2005) Absence of ferromagnetism in Co and Mn substituted polycrystalline ZnO. Phys Rev B 71:045201

    Article  Google Scholar 

  29. Zhang Z, Chen Q, Lee HD, Xue YY, Sun YY, Chen H, Chen F, Chu WK (2006) Absence of ferromagnetism in Co-doped ZnO prepared by thermal diffusion of Co atoms. J Appl Phys 100:043909

    Article  Google Scholar 

  30. Yin S, Xu MX, Yang L, Liu JF, Rosner H, Hahn H, Gleiter H, Schild D, Doyle S, Liu T, Hu TD, Takayama-Muromachi E, Jiang JZ (2006) Absence of ferromagnetism in bulk polycrystalline Zn0.9Co0.1O. Phys Rev B 73:224408

    Article  Google Scholar 

  31. de Carvalho HB, de Godoy MPF, Paes RWD, Mir M, Ortiz de Zevallos A, Iikawa F, Brasil MJSP, Chitta VA, Ferraz WB, Boselli MA, Sabioni ACS (2010) Absence of ferromagnetic order in high quality bulk Co-doped ZnO samples. J Appl Phys 108:033914

    Article  Google Scholar 

  32. Norton DP, Overberg ME, Pearton SJ, Pruessner K, Budai JD, Boatner LA, Chisholm MF, Lee JS, Khim ZG, Park YD (2003) Ferromagnetism in cobalt-implanted ZnO. Appl Phys Lett 83:5488–5490

    Article  Google Scholar 

  33. Potzger K, Zhou S, Reuther H, Mucklich A, Eichhorn F, Schell N, Skorupa W, Helm M, Fassbender J, Herrmannsdorfer T (2006) Fe implanted ferromagnetic ZnO. Appl Phys Lett 88:052508

    Article  Google Scholar 

  34. Wu P, Saraf G, Lu Y, Hill DH, Gateau R, Wielunski L, Bartynski RA, Arena DA, Dvorak J, Moodenbaugh A (2006) Ferromagnetism in Fe-implanted a-plane ZnO films. Appl Phys Lett 89:012508

    Article  Google Scholar 

  35. Zhou SQ, Potzger K, Borany JV, Grotzschel R, Skorupa W, Helm M, Fassbender J (2008) Crystallographically oriented Co and Ni nanocrystals inside ZnO formed by ion implantation and postannealing. Phys Rev B 77:035209

    Article  Google Scholar 

  36. Schumm M, Koerdel M, Muller S, Ronning C, Dynowska E, Golacki Z, Szuszkiewicz W, Geurts J (2009) Secondary phase segregation in heavily transition metal implanted ZnO. J Appl Phys 105:083525

    Article  Google Scholar 

  37. Wikberg JM, Knut R, Audren A, Ottosson M, Linnarsson MK, Karis O, Hallen A, Svedlindh P (2011) Annealing effects on structural and magnetic properties of Co implanted ZnO single crystals. J Appl Phys 109:083918

    Article  Google Scholar 

  38. Srivastava P, Ghosh S, Joshi B, Satyarthi P (2012) Probing origin of room temperature ferromagnetism in Ni ion implanted ZnO films with x-ray absorption spectroscopy. J Appl Phys 111:013715

    Article  Google Scholar 

  39. Chen ZQ, Wang SJ, Maekawa M, Kawasuso A, Naramoto H, Yuan XL, Sekiguchi T (2007) Thermal evolution of defects in as-grown and electron-irradiated ZnO studied by positron annihilation. Phys Rev B 75:245206

    Article  Google Scholar 

  40. Chen ZQ, Kawasuso A, Xu Y, Naramoto H, Yuan XL, Sekiguchi T, Suzuki R, Ohdaira T (2005) Microvoid formation in hydrogen-implanted ZnO probed by a slow positron beam. Phys Rev B 71:115213

    Article  Google Scholar 

  41. Chen ZQ, Maekawa M, Yamamoto S, Kawasuso A, Yuan XL, Sekiguchi T, Suzuki R, Ohdaira T (2004) Evolution of voids in Al-implanted ZnO probed by a slow positron beam. Phys Rev B 69:035210

    Article  Google Scholar 

  42. Tuomisto F, Ranki V, Saarinen K, Look DC (2003) Evidence of the Zn vacancy acting as the dominant acceptor in n-type ZnO. Phys Rev Lett 91:205502

    Article  Google Scholar 

  43. Biersack JP, Haggmark LG (1980) A Monte Carlo computer program for the transport of energetic ions in amorphous targets. Nucl Instrum Methods 174(1–2):257–269

    Article  Google Scholar 

  44. Wang XB, Song C, Geng KW, Zeng F, Pan F (2006) Luminescence and Raman scattering properties of Ag-doped ZnO films. J Phys D Appl Phys 39:4992–4996

    Article  Google Scholar 

  45. Mandal SK, Das AK, Nath TK, Karmakar D (2006) Temperature dependence of solubility limits of transition metals (Co, Mn, Fe, and Ni) in ZnO nanoparticles. Appl Phys Lett 89:144105

    Article  Google Scholar 

  46. Park JH, Min GK, Jang HM, Ryu S, Kim YM (2004) Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films. Appl Phys Lett 84:1338–1340

    Article  Google Scholar 

  47. Damen TC, Porto SPS, Tell B (1966) Raman effect in zinc oxide. Phys Rev 142:570–574

    Article  Google Scholar 

  48. Chen ZQ, Kawasuso A, Xu Y, Naramoto H (2005) Production and recovery of defects in phosphorus-implanted ZnO. J Appl Phys 97:013528

    Article  Google Scholar 

  49. Zeng JN, Low JK, Ren ZM, Liew T, Lu YF (2002) Effect of deposition conditions on optical and electrical properties of ZnO films prepared by pulsed laser deposition. Appl Surf Sci 197–198:362–367

    Article  Google Scholar 

  50. Jeong S-H, Kim J-K, Lee B-T (2003) Effects of growth conditions on the emission properties of ZnO films prepared on Si (100) by rf magnetron sputtering. J Phys D Appl Phys 36:2017

    Article  Google Scholar 

  51. Youn CJ, Jeong TS, Han MS, Kim JH (2004) Optical properties of Zn-terminated ZnO bulk. J Cryst Growth 261:526–532

    Article  Google Scholar 

  52. Zhang T, Song L, Chen Z, Shi E, Chao L, Zhang H (2006) Origin of ferromagnetism of (Co, Al)-codoped ZnO from first-principles calculations. Appl Phys Lett 89:172502

    Article  Google Scholar 

  53. Hu S, Yan S, Zhao M, Mei L (2006) First-principles LDA+U calculations of the Co-doped ZnO magnetic semiconductor. Phys Rev B 73:245205

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11305117, 11475130 and 11575131 and by Henan University of Science and Technology (Grant No. 2015GJB014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Q. Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D.D., Zhao, B., Qi, N. et al. Vacancy-mediated ferromagnetism in Co-implanted ZnO studied using a slow positron beam. J Mater Sci 52, 7067–7076 (2017). https://doi.org/10.1007/s10853-017-0939-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0939-3

Keywords

Navigation