Skip to main content

Advertisement

Log in

Thermodynamics and kinetics of MgH2–nfTa2O5 composite for reversible hydrogen storage application

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The thermodynamics and kinetics of hydrogen absorption–desorption of nfTa2O5–Mg–MgH2—composite (nf stands for nano-flakes) have been studied. The nfTa2O5–Mg composite could absorb hydrogen at room temperature (17 °C). The hydrogen desorption of nfTa2O5–MgH2 composite starts at 200 °C. The remarkably improved hydrogen absorption–desorption of catalyzed Mg–MgH2 could be attributed to the nano-engineered surface by nfTa2O5. The enthalpies of hydrogen absorption–desorption were found to be 80 ± 2, and 76 ± 3 kJ/mol respectively. The activation energy of hydrogen absorption was evaluated as 49 ± 5 kJ/mol which is same as the energy barrier for diffusion of hydrogen in Mg matrix. The apparent activation of hydrogen desorption of nfTa2O5–MgH2 was found to be 74 ± 7 kJ/mol. The nfTa2O5–MgH2 composite has shown cyclic stability up to fifty hydrogen absorption–desorption without significant changes in the kinetics and hydrogen storage capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Pacesila M, Burcea SG, Colesca SE (2016) Analysis of renewable energies in European Union. Renew Sustain Energy Rev 56:156–170

    Article  Google Scholar 

  2. Wang Y, Lu S, Zhou Z, Zhou W, Guo J, Lan Z (2017) Effect of a transition metal on the hydrogen storage properties Mg–Al alloy. J Mater Sci 52:2392–2399. doi:10.1007/s10853-016-0533-0

    Article  Google Scholar 

  3. Taxak M, Kumar S, Sheelvantra S, Krishnamurthy N (2014) Effect of iron on the solubility of hydrogen in tantalum. J Mater Sci 49:8471–8477. doi:10.1007/s10853-014-8557-9

    Article  Google Scholar 

  4. Zhevago NK (2016) Other methods of the physical storage of hydrogen. Compend Hydrogen Energy 82:189–218

    Article  Google Scholar 

  5. Matysik P, Czujko T, Varin RA (2014) The application of Pettifor structure maps to binary metal hydrides. Int J Hydrogen Energy 39:398–405

    Article  Google Scholar 

  6. Kumar S, Tiwari GP, Sagar S, Jain U, Krishnamurthy N (2014) High-performance FeTi-3.1 mass% V alloy for onboard hydrogen storage solution. Energy 75:520–524

    Article  Google Scholar 

  7. Taxak M, Kumar S, Krishnamurthy N (2013) Thermodynamic parameters for the Ta–Cr–H solid solution from equilibrium P–C–T data. J Chem Thermodyn 67:48–54

    Article  Google Scholar 

  8. Kumar S, Tirpude A, Taxak M, Krishnamurthy N (2013) Hydrogen absorption kinetics in powdered V + 80 wt%LaNi5 composite. J Alloys Compd 580:S179–S182

    Article  Google Scholar 

  9. Akiba E (1999) Hydrogen absorbing alloys. Curr Opin Solid Mater Sci 4:267–272

    Article  Google Scholar 

  10. Zuttel A (2004) Hydrogen storage methods. Naturwissenschaften 91:157–172

    Article  Google Scholar 

  11. Zuttel A (2013) Materials for hydrogen storage. Mater Today 6:24–33

    Article  Google Scholar 

  12. Wang H, Lin HJ, Cai WT, Ouyang LZ, Zhu M (2016) Tuning kinetics and thermodynamics of hydrogen storage in light metal element systems—A review of recent progress. J Alloys Compd 658:280–300

    Article  Google Scholar 

  13. Lu J, Choi YJ, Fang ZZ, Sohn HY, Rönnebro E (2010) Hydrogenation of nanocrystalline Mg at room temperature in the presence of TiH2. J Am Chem Soc 132:6616–6617

    Article  Google Scholar 

  14. Eli G, Maya S, Tony S et al (2014) Hydrogen sorption properties of 90 wt% MgH2–10 wt% MeSi2 (Me = Ti, Cr). J Mater Sci 49:2647–2652. doi:10.1007/s10853-013-7969-2

    Article  Google Scholar 

  15. Lototskyy M, Yartys VA (2015) Comparative analysis of the efficiencies of hydrogen storage systems utilizing solid state H storage materials. J Alloys Compd 645:S365–S373

    Article  Google Scholar 

  16. Bobet JL, Hhevalier B (2004) Hydrogen Storage Properties of Mg-based mixture elaborated by reactive mechanical grinding. J Mater Sci 39:5243–5246. doi:10.1023/B:JMSC.0000039219.04507.6f

    Article  Google Scholar 

  17. Matar SF (2010) Intermetallic hydrides: a review with ab initio aspects. Prog Solid State Chem 38:1–37

    Article  Google Scholar 

  18. Webb CJ (2015) A review of catalyst-enhanced magnesium hydride as a hydrogen storage materials. J Phys Chem Solids 84:96–106

    Article  Google Scholar 

  19. Aguey-Zinsou KF, Ares Fernadez JR, Klassen T, Borman R (2007) Effect of Nb2O5 on MgH2 properties during mechanical milling. Int J Hydrogen Energy 32:2400–2407

    Article  Google Scholar 

  20. Barkhoradarian G, Klassen T, Bormann R (2003) Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as Catalyst. Scr Mater 49:213–217

    Article  Google Scholar 

  21. Stephen DH, John JV, Chai R, Angus AR, Ian MR (2015) Effect of ball milling duration and dehydrogenation on the morphology, microstructure and catalyst dispersion in Ni-catalyzed MgH2 hydrogen storage materials. Acta Mater 86:55–68

    Article  Google Scholar 

  22. Imamura H, Tanaka K, Kitazawa I, Sumi T, Sakata Y, Nakayama N, Ooshima S (2009) Hydrogen storage properties of nanocrystalline MgH 2 and MgH 2/Sn nanocomposite synthesized by ball milling. J Alloys Compd 484:939–942

    Article  Google Scholar 

  23. Kecik D, Aydinol MK (2009) Density functional and dynamics study of the dissociative adsorption of hydrogen on Mg (0001) surface. Surf Sci 603:304–310

    Article  Google Scholar 

  24. Mamula BP, Novaković JG, Radisavljević I, Ivanović N, Novaković N (2014) Electronic structure and charge distribution topology of MgH 2 doped with 3d transition metals. Int J Hydrogen Energy 39:5874–5887

    Article  Google Scholar 

  25. Pozzo M, Alfe M (2009) Hydrogen dissociation and diffusion on transition metal (Ti, Zr, V, Fe, Ru Co, Rh, Ni, Pd, Cu, Ag)-doped Mg (00001) surfaces. Int J Hydrogen Energy 34:1922–1930

    Article  Google Scholar 

  26. Guo L, Yang Y (2013) Theoretical investigation of hydrogen molecular absorption and dissociation on AlnV (n = 1–13) clusters. Int J Hydrogen Energy 38:3640–3649

    Article  Google Scholar 

  27. Germanand E, Gebauer R (2016) Improvement of hydrogen vacancy diffusion kinetics in MgH2 by niobium- and zirconium-doping for hydrogen storage applications. J Phys Chem C 120(9):4806–4812. doi:10.1021/acs.jpcc.5b12092

    Article  Google Scholar 

  28. Leng H, Pan Y, Li Q, Chou KC (2014) Effect of LiH on hydrogen storage property of MgH2. Int J Hydrogen Energy 39:13622–13627

    Article  Google Scholar 

  29. Chen BH, Chuang YS, Cha-o-Kuang C (2016) Improving the hydrogenation properties of MgH2 at room temperature by doping with nano-size ZrO2 catalyst. J Alloys Compd 655:21–27

    Article  Google Scholar 

  30. Malka IE, Czujko T, Bystrzycki J (2010) The Catalytic effect of halide additives ball milled with magnesium hydride. Int J of Hydrogen Energy 35:1706–1712

    Article  Google Scholar 

  31. Krishnamurthy N, Kumar S, Awasthi A (2009) Preparation of binary alloys of refractory metals by co-reduction: group V metals alloys. In: Proceedings of International Symposium 17th PLANSEE, (Plansee-17), Austria 2009, vol 1, RM30/1-RM30/10, pp 1–10

  32. Tien HY, Tanniru M, Wu CY, Ebrahimi F (2009) Effect of hydride nucleation rate on the hydrogen capacity of Mg. Int J Hydrogen Energy 34:6343–6349

    Article  Google Scholar 

  33. Kumar S, Tiwari GP, Krishnamurthy N (2015) Tailoring the hydrogen desorption thermodynamics of V2H by alloying additives. J Alloys Compounds 645(2015):S252–S256

    Article  Google Scholar 

  34. Kumar S, Taxak M, Krishnamurthy N (2013) Synthesis and hydrogen absorption in V4Ti4Cr alloy. J Therm Anal Calorim 112(1):51–57

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledged the useful technical discussions with Professor N. Krishnamurthy, of Bhabha Atomic Research Centre and Professor D.K Ross of Salford University-Manchester, UK. The authors appreciate the keen interest and motivation shown by Professor G. K Dey, Director Materials Group during the investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest for this research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Tiwari, G.P. Thermodynamics and kinetics of MgH2–nfTa2O5 composite for reversible hydrogen storage application. J Mater Sci 52, 6962–6968 (2017). https://doi.org/10.1007/s10853-017-0928-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0928-6

Keywords

Navigation