Skip to main content
Log in

Mesostructure optimization in multi-material additive manufacturing: a theoretical perspective

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

As multi-material additive manufacturing technologies mature, a new opportunity for materials science and engineering emerges between the scale of the microstructure and the scale of an engineering component. Here we explore the problem of “mesostructure optimization,” the computational identification of preferred point-to-point distributions of material structure and properties. We illustrate the opportunity with two simple example problems for 1D and 2D mesostructure optimization, respectively, namely (1) a functionally graded cylinder that is computationally optimized to redistribute the Hertzian contact stress fields and (2) a thin plate made of digital materials computationally designed to simultaneously maximize bending resistance and minimize total weight. The mechanical performance of materials in these two problems is significantly improved as compared to any monolithic-material counterpart, including a topology-optimized monolith in case (2). These results point to new opportunities for multi-objective performance enhancement in materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bourell DL, Leu MC, Rosen DW (2009) Roadmap for additive manufacturing: identifying the future of freeform processing. The University of Texas, Austin, Texas

    Google Scholar 

  2. Gebhardt A (2012) Understanding additive manufacturing: rapid prototyping, rapid tooling, rapid manufacturing. Hanser Publications, Cincinnati

    Google Scholar 

  3. Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies, SpringerLink (Online service). Springer, New York

    Book  Google Scholar 

  4. Hopkinson N, Hague RJM, Dickens PM (2006) Rapid manufacturing: an industrial revolution for the digital age. Wiley, Chichester

    Google Scholar 

  5. Compton BG, Lewis JA (2014) 3D printing of lightweight cellular composites. Adv Mater 26:5930–5935

    Article  Google Scholar 

  6. Bauer J, Hengsbach S, Tesari I, Schwaiger R, Kraft O (2014) High-strength cellular ceramic composites with 3D microarchitecture. Proc Natl Acad Sci USA 111:2453–2458

    Article  Google Scholar 

  7. Smay JE, Gratson GM, Shepherd RF, Cesarano J, Lewis JA (2002) Directed colloidal assembly of 3D periodic structures. Adv Mater 14:1279–1283

    Article  Google Scholar 

  8. Hofmann DC, Roberts S, Otis R, Kolodziejska J, Dillon RP, Suh JO, Shapiro AA, Liu ZK, Borgonia JP (2014) Developing gradient metal alloys through radial deposition additive manufacturing. Sci Rep 4:5357

    Article  Google Scholar 

  9. Banerjee R, Collins PC, Bhattacharyya D, Banerjee S, Fraser HL (2003) Microstructural evolution in laser deposited compositionally graded α/β titanium-vanadium alloys. Acta Mater 51:3277–3292

    Article  Google Scholar 

  10. Oxman N, Keating S, Tsai E (2011) Functionally graded rapid prototyping, innovative developments in virtual and physical prototyping. In: Proceedings of the 5th international conference on advanced research in virtual and rapid prototyping, CRC Press, Taylor & Francis

  11. Bendsøe MP, Sigmund O (2003) Topology, optimization: theory, methods, and applications. Springer, Berlin

    Google Scholar 

  12. Rozvany GIN (1997) Topology optimization in structural mechanics. Springer, Wien

    Book  Google Scholar 

  13. Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190:3443–3459

    Article  Google Scholar 

  14. Bureerat S, Limtragool J (2006) Performance enhancement of evolutionary search for structural topology optimisation. Finite Elem Anal Des 42:547–566

    Article  Google Scholar 

  15. Lamberti L (2008) An efficient simulated annealing algorithm for design optimization of truss structures. Comput Struct 86:1936–1953

    Article  Google Scholar 

  16. Moita JMS, Correia VMF, Martins PG, Soares CMM, Soares CAM (2006) Optimal design in vibration control of adaptive structures using a simulated annealing algorithm. Compos Struct 75:79–87

    Article  Google Scholar 

  17. Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25:493–524

    Article  Google Scholar 

  18. Suzuki K, Kikuchi N (1991) A homogenization method for shape and topology optimization. Comput Methods Appl Mech Eng 93:291–318

    Article  Google Scholar 

  19. Rozvany GIN (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37:217–237

    Article  Google Scholar 

  20. Adams BL, Kalidindi S, Fullwood DT (2013) Microstructure sensitive design for performance optimization. Butterworth-Heinemann, Waltham

    Google Scholar 

  21. Torquato S (2010) Optimal design of heterogeneous materials. Annu Rev Mater Res 40:101–129

    Article  Google Scholar 

  22. Torquato S (2002) Random heterogeneous materials: microstructure and macroscopic properties. Springer, New York

    Book  Google Scholar 

  23. Johnson OK, Schuh CA (2013) The uncorrelated triple junction distribution function: towards grain boundary network design. Acta Mater 61:2863–2873

    Article  Google Scholar 

  24. Cross SR, Woollam R, Shademan S, Schuh CA (2013) Computational design and optimization of multilayered and functionally graded corrosion coatings. Corros Sci 77:297–307

    Article  Google Scholar 

  25. Suresh S, Mortensen A (1998) Fundamentals of functionally graded materials: processing and thermomechanical behaviour of graded metals and metal–ceramic composites. IOM Communications Ltd, London

    Google Scholar 

  26. Mortensen A, Suresh S (1995) Functionally graded metals and metal–ceramic composites: part 1 processing. Int Mater Rev 40:239–265

    Article  Google Scholar 

  27. Suresh S, Mortensen A (1997) Functionally graded metals and metal–ceramic composites: part 2 thermomechanical behaviour. Int Mater Rev 42:85–116

    Article  Google Scholar 

  28. Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  29. Ashby MF (2005) Materials selection in mechanical design, 3rd edn. Butterworth-Heinemann, Amsterdam

    Google Scholar 

  30. Yang X-S (2014) Nature-inspired optimization algorithms. Elsevier, London

    Google Scholar 

  31. Seidel R et al (2016) Ultrastructural and developmental features of the tessellated endoskeleton of elasmobranchs (sharks and rays). J Anat 229:681–702

    Article  Google Scholar 

  32. Gibson LJ (2012) The hierarchical structure and mechanics of plant materials. J R Soc Interface 9:2749–2766

    Article  Google Scholar 

  33. Dixon PG, Gibson LJ (2014) The structure and mechanics of Moso bamboo material. J R Soc Interface 11:20140321

    Article  Google Scholar 

  34. Balla VK et al (2007) Compositionally graded yttria-stabilized zirconia coating on stainless steel using laser engineered net shaping (LENS). Scripta Mater 57:861–864

    Article  Google Scholar 

  35. Balla VK et al (2009) Fabrication of compositionally and structurally graded Ti–TiO2 structures using laser engineered net shaping (LENS). Acta Biomater 5:1831–1837

    Article  Google Scholar 

  36. Wilson J, Shin YC (2012) Microstructure and wear properties of laser-deposited functionally graded Inconel 690 reinforced with TiC. Surf Coat Technol 207:517–522

    Article  Google Scholar 

  37. Vaezi M et al (2013) Multiple material additive manufacturing—part 1: a review. Virtual Phys Prototyp 8:19–50

    Article  Google Scholar 

  38. Tammas-Williams S, Todd I (2016) Design for additive manufacturing with site-specific properties in metals and alloys. Scripta Materialia. doi:10.1016/j.scriptamat.2016.10.030

  39. Liu W, DuPont JN (2003) Fabrication of functionally graded TiC/Ti composites by laser engineered net shaping. Scripta Mater 48:1337–1342

    Article  Google Scholar 

  40. Stratasy website. http://www.stratasys.com/materials/polyjet/digital-materials

  41. Doubrovski EL et al (2015) Voxel-based fabrication through material property mapping: a design method for bitmap printing. Comput Aided Des 60:3–13

    Article  Google Scholar 

  42. Suresh S (2001) Graded materials for resistance to contact deformation and damage. Science 292:2447–2451

    Article  Google Scholar 

  43. Sigmund O (2001) Design of multiphysics actuators using topology optimization—part I: one-material structures. Comput Methods Appl Mech Eng 190:6577–6604

    Article  Google Scholar 

Download references

Acknowledgements

This work enjoyed support from the US National Science Foundation, under contract No. CMMI-1332789.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hang Z. Yu or Christopher A. Schuh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H.Z., Cross, S.R. & Schuh, C.A. Mesostructure optimization in multi-material additive manufacturing: a theoretical perspective. J Mater Sci 52, 4288–4298 (2017). https://doi.org/10.1007/s10853-017-0753-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0753-y

Keywords

Navigation