Skip to main content
Log in

XPS study of the electronic density of states in the superconducting Mo2B and Mo2BC compounds

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The electronic structure of the Mo\(_2\)BC and Mo\(_2\)B compounds was investigated by X-ray photoelectron spectroscopy. The Mo 3d, C 1s, and B 1s core levels are identified. For the Mo\(_2\)BC, the core-level binding energies corresponding to Mo 3d\(_{5/2}\), B 1s, and C 1s are localized at 227.90, 187.94, and 282.95 eV, respectively, whereas for the Mo\(_2\)B, the Mo 3d\(_{5/2}\), and B 1s are localized at 228.09 and 188.06 eV, respectively. Core-level binding energies shifts are observed in both compounds using the charge-potential model. The electronic density of states was calculated for Mo\(_2\)B and Mo\(_2\)BC using GGA approximation. Our results show that the electronic density of states at the Fermi level in the Mo\(_2\)B is higher than that in the Mo\(_2\)BC. The dominance of the Mo 4d states down to 8 eV below the Fermi level is found. The calculated total DOS was consistent with the XPS valence band spectra. Finally, within the BCS theory framework, the presence of superconductivity in both compounds can not be explained only as a function of the electronic density of states at the Fermi level. The electron-phonon coupling constant (\(\lambda \)) was calculated using the McMillan equation; the obtained values were 0.75 for Mo\(_{2}\)BC and 0.70 for Mo\(_{2}\)B. These values indicate that both compounds are intermediate coupled superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu JJ (2001) Superconductivity at 39 K in magnesium diboride. Nature 410:63–64

    Article  Google Scholar 

  2. Buzea C, Yamashita T (2001) Review of the superconducting properties of MgB\(_2\). Supercond Sci Technol 14:R115–R146

    Article  Google Scholar 

  3. Kiessling R (1947) The crystal structures of molybdenum and tungsten borides. Acta Chem Scand 1:893–916

    Article  Google Scholar 

  4. Zhou D, Wang J, Cui Q, Li Q (2014) Crystal structure and physical properties of Mo\(_2\)B: first-principle calculations. J Appl Phys 115:113504

    Article  Google Scholar 

  5. Jeitschko W, Nowotny H, Benesovsky F (1963) Die Kristallstruktur von Mo\(_2\)BC. Monatsh Chem 94:565–568

    Article  Google Scholar 

  6. Lejay P, Chevalier B, Etourneau J, Hagenmuller P (1981) Influence of some metal substitutions on the superconducting behaviour of molybdenum borocarbide. J Less Common Met 82:193–200

    Article  Google Scholar 

  7. Engelhardt JJ (1969) Superconducting isotope effect in molybdenum boride and tungsten boride. Phys Rev 179:452–458

    Article  Google Scholar 

  8. Fisk Z (1991) Superconducting borides. AIP Conf Proc 231:155–164

    Article  Google Scholar 

  9. Yamamoto A, Takao C, Masui T, Izumi M, Tajima S (2002) High-pressure synthesis of superconducting Nb\(_{1-x}\)B\(_2\) (x = 0–0.48) with the maximum T\(_c\) = 9.2 K. Phys C 383:197–206

    Article  Google Scholar 

  10. Escamilla R, Lovera O, Akachi T, Duran A, Falconi R, Morales F, Escudero R (2004) Crystalline structure and the superconducting properties of NbB\(_{2+x}\). J Phys 16:5979–5990

    Google Scholar 

  11. Young DP, Goodrich RG, Adams PW, Chan JY, Fronczek FR, Drymiotis F, Henry LL (2002) Superconducting properties of BeB\(_{2.75}\). Phys Rev B 65:80518(R)

    Article  Google Scholar 

  12. Bolvardi HI, Emmerlich J, Baben M, Music D, von Appen J, Dronskowski R, Schneider JM (2013) ystematic study on the electronic structure and mechanical properties of X2BC (X = Mo, Ti, V, Zr, Nb, Hf, Ta and W). J Phys 25:045501

    Google Scholar 

  13. Emmerlich J, Music D, Braun M, Fayek P, Munnik F, Schneider JM (2009) A proposal for an unusually stiff and moderately ductile hard coating material: Mo\(_2\)BC. J Phys D 42:185406

    Article  Google Scholar 

  14. Falconi R, de la Mora P, Morales F, Escamilla R, Camacho CO, Acosta M, Escudero R (2015) High-pressure and electronic band structure studies on Mo\(_2\)BC. J Low Temp Phys 179:158–165

    Article  Google Scholar 

  15. Altomare A, Burla MC, Giacovazzo C, Guagliardi A, Moliterni AG, Polidori G, Rizzi R (2001) Quanto: a Rietveld program for quantitative phase analysis of polycrystalline mixtures. J Appl Crystallogr 34:392–397

    Article  Google Scholar 

  16. 2004 SDP v4.1 (32 bit) Copyright XPS International, LLC, Compiled 17 January (2004)

  17. Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients Rev. Mod Phys 64:1045–1097

    Article  Google Scholar 

  18. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys 14:2717–2744

    Google Scholar 

  19. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  20. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  21. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249

    Article  Google Scholar 

  22. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892–7895

    Article  Google Scholar 

  23. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  24. Radaelli PG, Hinks DG, Mitchell AW, Hunter BA, Wagner JL, Dabrowski B, Vandervoort KG, Viswanathan HK, Jorgensen JD (1994) Structural and superconducting properties of La\(_{2-x}\)Sr\(_x\)CuO\(_4\) as a function of Sr content. Phys Rev B 49:4163–4172

    Article  Google Scholar 

  25. Xu C, Wang L, Liu Z, Chen L, Guo J, Kang N, Ma X-L, Cheng H-M, Ren W (2015) Large-area high-quality 2D ultrathin Mo\(_2\)C superconducting crystals. Nat Mater 14:1135–1141

    Article  Google Scholar 

  26. Brainard WA, Wheeler DR (1978) An XPS study of the adherence of refractory carbide silicide and boride rf-sputtered wear-resistant coatings. J Vac Sci Technol 15:1801

    Article  Google Scholar 

  27. Mavel G, Escard J, Costa P, Castaing J (1973) ESCA surface study of metal borides. Surf Sci 35:109–116

    Article  Google Scholar 

  28. Sarma DD, Rao CNR (1980) XPES studies of oxides of second- and third-row transition metals including rare earths. J Electron Spectrosc Relat Phenom 20:25–45

    Article  Google Scholar 

  29. Joyner DJ, Johnson O, Hercules DM (1970) A study of the iron borides. Electron spectroscopy. J Am Chem Soc 102:1910–1917

    Article  Google Scholar 

  30. Escamilla R, Huerta L (2006) X-ray photoelectron spectroscopy studies of non-stoichiometric superconducting NbB\(_{2+x}\). Supercond Sci Technol 19:623–628

    Article  Google Scholar 

  31. Kobayashi K, Mizokawa T, Mamiy K, Sekiyama A, Fujimori A, Takagi H, Eisaki H, Uchida S, Cava RJ, Krajewski JJ, Peck WF Jr. (1996) Photoemission study of Ni borocarbides: superconducting YNi\(_2\)B\(_2\)C and nonsuperconducting LaNi\(_2\)B\(_2\)C. Phys Rev B 54:507–514

    Article  Google Scholar 

  32. Khyzhu OY (1999) Electronic structure and charge state of atoms of cubic and hexagonal tantalum carbides. Powder Metall Met Ceram 38:284–291

    Article  Google Scholar 

  33. Magnuson M, Lewin E, Hultman L, Jansson U (2009) Electronic structure and chemical bonding of nanocrystalline-TiC/amorphous- C nanocomposites. Phys Rev B 80:235108

    Article  Google Scholar 

  34. Furlan A, Lu J, Hultman L, Jansson U, Magnuson M (2014) Crystallization characteristics and chemical bonding properties of nickel carbide thin film nanocomposites. J Phys 26:415501

    Google Scholar 

  35. Dai-Yi Q, Zi G (1990) XPS study of tungsten carbide Chin. J Chem 8:301–305

    Google Scholar 

  36. Siegbahn K, Nordling C, Johansson G, Hedman J, Hedn PF, Hamrin K, Gelius U, Bergmark T, Werme LO, Manne R, Baer Y (1969) ESCA applied to free molecules. North-Holland, Amsterdam

    Google Scholar 

  37. Pauling L (1957) The nature of the chemical bond, 3rd edn. Cornell University Press, Ithaca

    Google Scholar 

  38. Talapatra A, Bandyopadhyay SK, Sen P, Barat B, Mukherjee S, Mukherjee M (2005) X-ray photoelectron spectroscopy studies of MgB\(_2\) for valence state of Mg. Phys C 419:141–147

    Article  Google Scholar 

  39. Kurmaev EZ, McLeod JA, Buling A, Skorikov NA, Moewes A, Neumann M, Korotin MA, Izyumov YA, Ni N, Canfield PC (2009) Contribution of Fe 3d states to the Fermi level of CaFe\(_2\)As\(_2\). Phys Rev B 80:054508

    Article  Google Scholar 

  40. Gamza M, Slebarski A, Deniszczyk J (2006) Electronic structure of CeRhIn\(_5\) and CeIrIn\(_5\). Mater Sci Pol 24:569–577

    Google Scholar 

  41. Likhachev ER, Dubrovskii OI, Kurganskii SI, Domashevskaya EP (1998) Analysis of photoelectron spectra of high-temperature superconductors. J Electron Spectrosc Relat Phenom 88–91:479–483

    Article  Google Scholar 

  42. Vasquez RP, Jung CU, Park MS, Kim HJ, Kim JY, Lee SI (2001) X-ray photoemission study of MgB\(_2\). Phys Rev B 64:052510

    Article  Google Scholar 

  43. Shen ZX, Lindberg PAP, Wells BO, Mitzi DB, Lindau I, Spicer WE, Kapitulnik A (1988) Valence-band and core-level photoemission study of single-crystal Bi\(_2\)CaSr\(_2\)Cu\(_2\)O\(_8\) superconductors. Phys Rev B 38:11820–11823

    Article  Google Scholar 

  44. Bardeen J, Cooper LN, Schrieffer JR (1957) Theory of superconductivity. Phys Rev 108:1175–1204

    Article  Google Scholar 

  45. Isaev EI, Ahuja R, Simak SI, Lichtenstein AI, Vekilov YK, Johansson B, Abrikosov IA (2005) Anomalously enhanced superconductivity and ab initio lattice dynamics in transition metal carbides and nitrides. Phys Rev B 72:064515

    Article  Google Scholar 

  46. Junod A, Jarlborg T, Muller J (1983) Heat-capacity analysis of a large number of A15-type compounds. Phys Rev B 27:1568–1585

    Article  Google Scholar 

  47. Paduani C (2007) Electronic Structure of the A3B Compounds: A = Nb; B = Al, Ga, Ge, Sn and In. Braz J Phys 37:1073–1076

    Google Scholar 

  48. Abd-Shukor R (2007) Electron-phonon coupling constant of cuprate based high temperature superconductors. Solid State Commun 142:587–590

    Article  Google Scholar 

  49. Ledbetter H (1994) Dependence of T\(_c\) on Debye temperature \(\theta _{D}\) for various cuprates. Phys C 235–240:1325–1326

    Article  Google Scholar 

  50. Toth LE, Zbasnik J, Sato Y, Gardner W (1968) Anisotropy in single-crystal refractory compounds. Plenum Press, New York, p 249

    Book  Google Scholar 

  51. Blinder AV, Bolgar AS (1991) Heat capacity and enthalpy of transition-metal borides in a broad range of temperatures Soviet. Powder Metall Met Ceram 30:1053–1056

    Google Scholar 

  52. McMillan WL (1968) Transition temperature of strong-coupled superconductors. Phys Rev 167:331–344

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Projects DGAPA-UNAM IN-106116, SIP-20141640 and SIP-20141641 from IPN. Financial support to PASPA-DGAPA and also, for their technical help to F. Silvar, M.M.S. Alberto Lopez-Vivas, J. Morales and C. González. Calculations were done using resources from the Supercomputing Center DGTIC-UNAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Escamilla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escamilla, R., Carvajal, E., Cruz-Irisson, M. et al. XPS study of the electronic density of states in the superconducting Mo2B and Mo2BC compounds. J Mater Sci 51, 6411–6418 (2016). https://doi.org/10.1007/s10853-016-9938-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9938-z

Keywords

Navigation