Skip to main content
Log in

Carbon fiber-reinforced epoxy filament-wound composite laminates exposed to hygrothermal conditioning

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study focuses on the evaluation of the effect of hygrothermal conditioning on tensile, compressive, in-plane and interlaminar shear properties, and also on the viscoelastic characteristics of carbon fiber/epoxy laminates. Flat unidirectional laminates were manufactured by dry filament winding and cured under hot compression. The laminates were later exposed to hygrothermal conditioning in a chamber, following the recommendations of ASTM D5229M. All composite coupons were tested before and after conditioning. An analytical Fickian model was used to fit experimental data, showing very good estimates. Shear strength and modulus reduced to about 30 and 38 %, respectively. All specimens presented acceptable failure modes; shear specimens failed at the gage section with delaminations and fiber/matrix debonding, whereas short beam specimens failed via delaminations at the specimen mid-plane. Moisture penetration through the carbon/epoxy surface lead to interfacial debonding and matrix plasticization. Puck’s failure envelope accurately predicted failure under compressive and shear loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Botelho EC, Costa ML, Pardini LC, Rezende MC (2005) Processing and hygrothermal effects on viscoelastic behavior of glass fiber/epoxy composites. J Mater Sci 40(14):3615–3623. doi:10.1007/s10853-005-0760-2

    Article  Google Scholar 

  2. Almeida JHS Jr, Faria H, Marques AT, Amico SC (2014) Load sharing ability of the liner in type III composite pressure vessels under internal pressure. J Reinf Plast Compos 33(24):2274–2286

    Article  Google Scholar 

  3. Pillay S, Vaidya UK, Janowski GM (2009) Effects of moisture and UV exposure on liquid molded carbon fabric reinforced nylon 6 composite laminates. Compos Sci Technol 69(6):839–846

    Article  Google Scholar 

  4. Bao L-R, Yee AF (2002) Moisture diffusion and hygrothermal aging in bismaleimide matrix carbon fiber composites: part II-Woven and hybrid composites. Compos Sci Technol 62(16):2111–2119

    Article  Google Scholar 

  5. Zhang A, Lu H, Zhang D (2014) Synergistic effect of cyclic mechanical loading and moisture absorption on the bending fatigue performance of carbon/epoxy composites. J Mater Sci 49(1):314–320. doi:10.1007/s10853-013-7707-9

    Article  Google Scholar 

  6. Zheng Q, Morgan RJ (1993) Synergistic thermal-moisture damage mechanisms of epoxies and their carbon fiber composites. J Compos Mater 27(15):1465–1478

    Article  Google Scholar 

  7. Bao L-R, Yee AF (2002) Effect of temperature on moisture absorption in a bismaleimide resin and its carbon fiber composites. Polymer 43(14):3987–3997

    Article  Google Scholar 

  8. Kumar BG, Singh RP, Nakamura T (2002) Degradation of carbon fiber-reinforced epoxy composites by ultraviolet radiation and condensation. J Comp Mater 36(24):2713–2733

    Article  Google Scholar 

  9. Mouzakis DE, Zoga H, Galiotis C (2008) Accelerated environmental aging study of polyester/glass fiber reinforced composites (GFRPCs). Compos B 39(3):467–475

    Article  Google Scholar 

  10. Batista NL, Faria MCM, Iha K, Oliveira PC, Botelho EC (2015) Influence of water immersion and ultraviolet weathering on mechanical and viscoelastic properties of polyphenylene sulfide–carbon fiber composites. J Thermoplast Compos Mater 28(3):340–356

    Article  Google Scholar 

  11. Botelho EC, Pardini LC, Rezende MC (2006) Hygrothermal effects on the shear properties of carbon fiber/epoxy composites. J Mater Sci 41(21):7111–7118. doi:10.1007/s10853-006-0933-7

    Article  Google Scholar 

  12. Tsai YI, Bosze EJ, Barjasteh E, Nutt SR (2009) Influence of hygrothermal environment on thermal and mechanical properties of carbon fiber/fiberglass hybrid composites. Compos Sci Technol 69(3–4):432–437

    Article  Google Scholar 

  13. Sun P, Zhao Y, Luo Y, Sun L (2011) Effect of temperature and cyclic hygrothermal aging on the interlaminar shear strength of carbon fiber/bismaleimide (BMI) composite. Mater Des 32(8–9):4341–4347

    Article  Google Scholar 

  14. Tsai SW, Wu EM (1971) A general theory of strength for anisotropic materials. J Compos Mater 5(1):58–80

    Article  Google Scholar 

  15. Tsai SW (1965) Strength characteristics of composite materials, NASA technical report CR-224

  16. Hashin Z (1979) Analysis of properties of fiber composites with anisotropic constituents. J Appl Mech 46(3):543–550

    Article  Google Scholar 

  17. Christensen RM (1997) Stress based yield/failure criteria for fiber composites. Int J Solid Struct 34(5):529–543

    Article  Google Scholar 

  18. Puck A, Mannigal M (2007) Physically based non-linear stress-strain relations for the inter-fiber fracture analysis of FRP laminates. Compos Sci Technol 67(9):1955–1964

    Article  Google Scholar 

  19. Karbhari VM, Xian G (2009) Hygrothermal effects on high VF pultruded unidirectional carbon/epoxy composites: moisture uptake. Compos B 40(1):41–49

    Article  Google Scholar 

  20. Jiang X, Kolstein H, Bijlaard F, Qiang X (2014) Effects of hygrothermal aging on glass-fibre reinforced polymer laminates and adhesive of FRP composite bridge: moisture diffusion characteristics. Compos A 57:49–58

    Article  Google Scholar 

  21. Chandra R, Singh SP, Gupta K (1999) Damping studies in fibre-reinforced composites—a review. Compos Struct 46(1):41–51

    Article  Google Scholar 

  22. Nakanishi Y, Hana K, Hamada H (1997) Fractography of fracture in CFRP under compressive load. Compos SciTechnol 57(8):1139–1147

    Article  Google Scholar 

  23. Pinho ST, Iannucci L, Robinson P (2006) Physically-based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking: part I: Development. Compos A 37(1):63–73

    Article  Google Scholar 

  24. Almeida JHS Jr, Angrizani CC, Botelho EC, Amico SC (2015) Effect of fiber orientation on the shear behavior of glass fiber/epoxy composites. Mater Des 65:789–795

    Article  Google Scholar 

  25. Whitney JM, Browning CE (1985) On short-beam shear tests for composite materials. Exp Mech 25(3):294–300

    Article  Google Scholar 

  26. Silva LV, Júnior JHSA, Angrizani CC, Amico SC (2013) Short beam strength of curaua, sisal, glass and hybrid composites. J Reinf Plast Compos 32(3):197–206

    Article  Google Scholar 

  27. Sun CT, Tao J (1998) Prediction of failure envelopes and stress/strain behaviour of composite laminates. Compos Sci Technol 58(7):1125–1136

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CAPES, FAPESP, CNPq, and AEB (Brazilian Space Agency) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Humberto S. Almeida Jr..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, J.H.S., Souza, S.D.B., Botelho, E.C. et al. Carbon fiber-reinforced epoxy filament-wound composite laminates exposed to hygrothermal conditioning. J Mater Sci 51, 4697–4708 (2016). https://doi.org/10.1007/s10853-016-9787-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9787-9

Keywords

Navigation