Skip to main content
Log in

Gas sensing study of hydrothermal reflux synthesized NiO/graphene foam electrode for CO sensing

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nickel oxide nanosheets have been successfully synthesized on the graphene foam (GF) using hydrothermal reflux process for their application as carbon monoxide (CO) gas sensor. X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, energy dispersive spectroscopy, and gas sorption analysis were used to characterize the structure and morphology of the samples. The morphology (SEM), crystal structure (XRD and Raman), and elemental composition (EDS) analysis of NiO/GF composite confirmed the cubic crystal structure of NiO and elemental composition (i.e., Ni, O, and C) of NiO/GF composite. The results reveal that the incorporation of graphene into NiO nanosheets not only improved the surface area of NiO/GF composite, but also enhanced the performance of the composite on CO sensing by improving its conductivity. These results indicate that NiO/GF has potential as electrode material for CO gas sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Susanti D, Diputra AAGP, Tananta L, Purwaningsih H, Kusuma GE, Wang C, Shih S, Huang Y (2014) WO3 nanomaterials synthesized via a sol-gel method and calcination for use as a CO gas sensor. Front Chem Sci Eng 8:179–187

    Article  Google Scholar 

  2. Zhang Z, Zou R, Song G, Yu L, Chen Z, Hu J (2011) Highly aligned SnO2 nanorods on graphene sheets for gas sensors. J Mater Chem 21:17360

    Article  Google Scholar 

  3. An W, Yang CY (2011) Progress of research on preparation of micro gas sensors of metal oxide semiconductors. Appl Mech Mater 143–144:562–566

    Article  Google Scholar 

  4. Bai S, Guo W, Sun J, Li J, Tian Y, Chen A, Luo R, Li D (2016) Synthesis of SnO2–CuO heterojunction using electrospinning and application in detecting of CO. Sensors Actuators B Chem 226:96–103

    Article  Google Scholar 

  5. Hoa LT, Tien HN, Luan VH, Chung JS, Hur SH (2013) Fabrication of a novel 2D-graphene/2D-NiO nanosheet-based hybrid nanostructure and its use in highly sensitive NO2 sensors. Sensors Actuators B Chem 185:701–705

    Article  Google Scholar 

  6. Wang L, Lou Z, Wang R, Fei T, Zhang T (2012) Ring-like PdO-decorated NiO with lamellar structures and their application in gas sensor. Sensors Actuators B Chem 171–172:1180–1185

    Article  Google Scholar 

  7. Soleimanpour AM, Jayatissa AH, Sumanasekera G (2013) Surface and gas sensing properties of nanocrystalline nickel oxide thin films. Appl Surf Sci 276:291–297

    Article  Google Scholar 

  8. Zeng W, Miao B, Lin L, Xie J (2012) Facile synthesis of NiO nanowires and their gas sensing performance. Trans Nonferrous Met Soc China 22:s100–s104

    Article  Google Scholar 

  9. Choi J-M, Byun J-H, Kim SS (2016) Influence of grain size on gas-sensing properties of chemiresistive p-type NiO nanofibers. Sensors Actuators B Chem 227:149–156

    Article  Google Scholar 

  10. Wang J, Zeng W, Wang Z (2016) Assembly of 2D nanosheets into 3D flower-like NiO: synthesis and the influence of petal thickness on gas-sensing properties. Ceram Int 42:4567–4573

    Article  Google Scholar 

  11. Bello A, Makgopa K, Fabiane M, Dodoo-Ahrin D, Ozoemena KI, Manyala N (2013) Chemical adsorption of NiO nanostructures on nickel foam-graphene for supercapacitor applications. J Mater Sci 48:6707–6712

    Article  Google Scholar 

  12. Yang Z, Xu F, Zhang W, Mei Z, Pei B, Zhu X (2014) Controllable preparation of multishelled NiO hollow nanospheres via layer-by-layer self-assembly for supercapacitor application. J Power Sources 246:24–31

    Article  Google Scholar 

  13. Needham SA, Wang GX, Liu HK (2006) Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries. J Power Sources 159:254–257

    Article  Google Scholar 

  14. Wu Y, Balakrishna R, Reddy MV, Naira AS, Chowdari BVR, Ramakrishna S (2012) Functional properties of electrospun NiO/RuO2 composite carbon nanofibers. J Alloys Compd 517:69–74

    Article  Google Scholar 

  15. Ramasami AK, Reddy MV, Balakrishna GR (2015) Combustion synthesis and characterization of NiO nanoparticles. Mater Sci Semicond Process 40:194–202

    Article  Google Scholar 

  16. Reddy MV, Subba Rao GV, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364–5457

    Article  Google Scholar 

  17. Liu H, Zheng W, Yan X, Feng B (2008) Studies on electrochromic properties of nickel oxide thin films prepared by reactive sputtering. J Alloys Compd 462:356–361

    Article  Google Scholar 

  18. Ozkan Zayim E, Turhan I, Tepehan FZ, Ozer N (2008) Sol–gel deposited nickel oxide films for electrochromic applications. Sol Energy Mater Sol Cells 92:164–169

    Article  Google Scholar 

  19. Gibson EA, Smeigh AL, Le Pleux L, Fortage J, Boschloo G, Blart E, Pellegrin Y, Odobel F, Haqfeldt A, Hammarströme L (2009) A p-type NiO-based dye-sensitized solar cell with an open-circuit voltage of 0.35 V. Angew Chemie 121:4466–4469

    Article  Google Scholar 

  20. Kaviyarasu K, Manikandan E, Kennedy J, Jayachandran M, Ladchumananandasiivam R, De Gomes UU, Maaza M (2016) Synthesis and characterization studies of NiO nanorods for enhancing solar cell efficiency using photon upconversion materials. Ceram Int 42:8385–8394

    Article  Google Scholar 

  21. Singh J, Kalita P, Singh MK, Malhotra BD (2011) Nanostructured nickel oxide-chitosan film for application to cholesterol sensor. Appl Phys Lett 98:123702

    Article  Google Scholar 

  22. Cuong TV, Pham VH, Chung JS, Shin EW, Yoo DH, Hahn SH, Huh JS, Rue GS, Kim EJ, Hur SH, Kohl PA (2010) Solution-processed ZnO-chemically converted graphene gas sensor. Mater Lett 64:2479–2482

    Article  Google Scholar 

  23. Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) Graphene for electrochemical sensing and biosensing. TrAC Trends Anal Chem 29:954–965

    Article  Google Scholar 

  24. Soldano C, Mahmood A, Dujardin E (2010) Production, properties and potential of graphene. Carbon N Y 48:2127–2150

    Article  Google Scholar 

  25. Zheng M, Takei K, Hsia B, Fang H, Zhang X, Ferralis N, Ko H, Chueh YL, Zhang Y, Maboudian R, Javey A (2010) Metal-catalyzed crystallization of amorphous carbon to graphene. Appl Phys Lett 96:063110

    Article  Google Scholar 

  26. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci U S A 102:10451–10453

    Article  Google Scholar 

  27. Yuan W, Shi G (2013) Graphene-based gas sensors. J Mater Chem A 1:10078

    Article  Google Scholar 

  28. Mwakikunga BW, Motshekga S, Sikhwivhilu L, Moodley M, Scriba M, Malgas G, Simo A, Sone B, Maaza M, Ray SS (2013) A classification and ranking system on the H2 gas sensing capabilities of nanomaterials based on proposed coefficients of sensor performance and sensor efficiency equations. Sensors Actuators B Chem 184:170–178

    Article  Google Scholar 

  29. Bie L-J, Yan X-N, Yin J, Duan Y-Q, Yuan Z-H (2007) Nanopillar ZnO gas sensor for hydrogen and ethanol. Sensors Actuators B Chem 126:604–608

    Article  Google Scholar 

  30. Li C, Zhang D, Liu X, Han S, Tang T, Han J, Zhou C (2003) Chemical capping synthesis of nickel oxide nanoparticles and their characterizations studies. Appl Phys Lett 82:1613

    Article  Google Scholar 

  31. Barzegar F, Bello A, Momodu D, Madito MJ, Dangbegnon J, Manyala N (2016) Preparation and characterization of porous carbon from expanded graphite for high energy density supercapacitor in aqueous electrolyte. J Power Sources 309:245–253

    Article  Google Scholar 

  32. Yan J, Fan Z, Sun W, Ning G, Wei T, Zhang Q, Zhang R, Zhi L, Wei F (2012) Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater 22:2632–2641

    Article  Google Scholar 

  33. Cai F-S, Zhang G-Y, Chen J, Gou X-L, Liu H-K, Dou X-H (2004) Ni(OH)2 tubes with mesoscale dimensions as positive-electrode materials of alkaline rechargeable batteries. Angew Chem Int Ed Engl 43:4212–4216

    Article  Google Scholar 

  34. Khaleed AA, Bello A, Dangbegnon JK, Ugbo FU, Barzegar F, Momodu DY, Madito MJ, Masikhwa TM, Olaniyan O, Manyala N (2016) A facile hydrothermal reflux synthesis of Ni(OH)2/GF electrode for supercapacitor application. J Mater Sci 51:6041–6050

    Article  Google Scholar 

  35. Jiang H, Zhao T, Li C, Ma J (2011) Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors. J Mater Chem 21:3818–3823

    Article  Google Scholar 

  36. Chae S, Gunes F, Kim K, Kim E, Han G (2009) Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation. Adv Mater 21:2328–2333

    Article  Google Scholar 

  37. Bai S, Chen S, Zhao Y, Guo T, Luo R, Li D, Chen A (2014) Gas sensing properties of Cd-doped ZnO nanofibers synthesized by the electrospinning method. J Mater Chem A 2:16697–16706

    Article  Google Scholar 

  38. Soleimanpour AM, Jayatissa AH (2010) Effect of UV irradiation on gas sensing behavior of nanocrystalline ZnO thin films. In: 2010 IEEE Nanotechnol. Mater Devices Conf IEEE, pp 225–229

  39. Hu H, Trejo M, Nicho M, Saniger J, Garcia-Valenzuela A (2002) Adsorption kinetics of optochemical NH3 gas sensing with semiconductor polyaniline films. Sensors Actuators B Chem 82:14–23

    Article  Google Scholar 

  40. Della Gaspera E, Guglielmi M, Martucci A, Giancaterini L, Cantalini C (2012) Enhanced optical and electrical gas sensing response of sol–gel based NiO–Au and ZnO–Au nanostructured thin films. Sensors Actuators B Chem 164:54–63

    Article  Google Scholar 

  41. Cho NG, Hwang I-S, Kim H-G, Lee J-H, Kim I-D (2011) Gas sensing properties of p-type hollow NiO hemispheres prepared by polymeric colloidal templating method. Sensors Actuators B Chem

  42. Aslani A, Oroojpour V, Fallahi M (2011) Sonochemical synthesis, size controlling and gas sensing properties of NiO nanoparticles. Appl Surf Sci 257:4056–4061

    Article  Google Scholar 

  43. Hotovy I, Huran J, Siciliano P, Capone S, Spiess L, Rehacek V (2001) The influences of preparation parameters on NiO thin film properties for gas-sensing application. Sensors Actuators B Chem 78:126–132

    Article  Google Scholar 

  44. Kim H-R, Haensch A, Kim I-D, Barsan N, Weimer U, Lee J-H (2011) The role of NiO doping in reducing the impact of humidity on the performance of SnO2-based gas sensors: synthesis strategies, and phenomenological and spectroscopic studies. Adv Funct Mater 21:4456–4463

    Article  Google Scholar 

Download references

Acknowledgements

This work is based on the research supported by the South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation of South Africa (Grant No. 97994). A. A. Khaleed acknowledges financial support from University of Pretoria and the NRF through SARChI chair in Carbon Technology and Materials.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. W. Mwakikunga or N. Manyala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaleed, A.A., Bello, A., Dangbegnon, J.K. et al. Gas sensing study of hydrothermal reflux synthesized NiO/graphene foam electrode for CO sensing. J Mater Sci 52, 2035–2044 (2017). https://doi.org/10.1007/s10853-016-0491-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0491-6

Keywords

Navigation