Skip to main content
Log in

The impact of a designed lactic acid-based crosslinker in the thermochemical properties of unsaturated polyester resins/nanoprecipitated calcium carbonate composites

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Unsaturated polyester composites (UPCs) were prepared from biobased unsaturated polyester resins (UPRs) and nanoprecipitated calcium carbonate (NPCC). The UPRs were obtained from the crosslinking reaction of an unsaturated polyester (UP) made from renewable monomers and styrene (St) or a mixture of St with a designed lactic acid-based crosslinker (BPPC). The UPCs were obtained by adding the NPCC to the formulations. Aspects of the composition of the UPs and of the BPPC were confirmed by FTIR and 1H NMR spectroscopies. Different UPCs were prepared and the influences of the addition of NPCC and of the amount of BPPC on their thermomechanical properties were evaluated. The BPPC has a major influence on the properties of the UPCs, namely a significant improvement of mechanical properties and of the thermal stability of UPCs. Both results suggest that the BPPC may be acting as a compatibilizer between the polymer matrix and the filler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Jaya Vinse Ruban Y, Ginil Mon S, Vetha Roy D (2014) Chemical resistance/thermal and mechanical properties of unsaturated polyester-based nanocomposites. Appl Nanosci 4(2):233–240. doi:10.1007/s13204-013-0193-1

    Article  Google Scholar 

  2. Beheshty MH, Vafayan M, Poorabdollah M (2009) Low profile unsaturated polyester resin–clay nanocomposite properties. Polym Compos 30(5):629–638. doi:10.1002/pc.20597

    Article  Google Scholar 

  3. de Farias MA, Farina MZ, Pezzin APT, Silva DAK (2009) Unsaturated polyester composites reinforced with fiber and powder of peach palm: mechanical characterization and water absorption profile. Mater Sci Eng, C 29(2):510–513. doi:10.1016/j.msec.2008.09.020

    Article  Google Scholar 

  4. Gonçalves FAMM, Costa CSMF, Fabela IGP, Farinha D, Faneca H, Simões PN et al (2014) 3D printing of new biobased unsaturated polyesters by microstereo-thermal-lithography. Biofabrication. 6(3):035024

    Article  Google Scholar 

  5. Fonseca AC, Lopes IM, Coelho JFJ, Serra AC (2015) Synthesis of unsaturated polyesters based on renewable monomers: structure/properties relationship and crosslinking with 2-hydroxyethyl methacrylate. React Funct Polym 97:1–11. doi:10.1016/j.reactfunctpolym.2015.10.002

    Article  Google Scholar 

  6. Sousa AF, Fonseca AC, Serra AC, Freire CSR, Silvestre AJD, Coelho JFJ (2016) New unsaturated copolyesters based on 2,5-furandicarboxylic acid and their crosslinked derivatives. Polym Chem 7(5):1049–1058. doi:10.1039/C5PY01702E

    Article  Google Scholar 

  7. Goerz O, Ritter H (2013) Polymers with shape memory effect from renewable resources: crosslinking of polyesters based on isosorbide, itaconic acid and succinic acid. Polym Int 62(5):709–712. doi:10.1002/pi.4443

    Article  Google Scholar 

  8. Barrett DG, Merkel TJ, Luft JC, Yousaf MN (2010) One-step syntheses of photocurable polyesters based on a renewable resource. Macromolecules 43(23):9660–9667. doi:10.1021/ma1015424

    Article  Google Scholar 

  9. Wu Y, Li K (2016) Replacement of styrene with acrylated epoxidized soybean oil in an unsaturated polyester resin from propylene glycol, isophthalic acid, and maleic anhydride. J Appl Polym Sci 133(8):43052. doi:10.1002/app.43052

    Article  Google Scholar 

  10. Dai J, Ma S, Wu Y, Han L, Zhang L, Zhu J et al (2015) Polyesters derived from itaconic acid for the properties and bio-based content enhancement of soybean oil-based thermosets. Green Chem 17(4):2383–2392. doi:10.1039/C4GC02057J

    Article  Google Scholar 

  11. La Scala JJ, Sands JM, Orlicki JA, Robinette EJ, Palmese GR (2004) Fatty acid-based monomers as styrene replacements for liquid molding resins. Polymer 45(22):7729–7737. doi:10.1016/j.polymer.2004.08.056

    Article  Google Scholar 

  12. Cousinet S, Ghadban A, Fleury E, Lortie F, Pascault J-P, Portinha D (2015) Toward replacement of styrene by bio-based methacrylates in unsaturated polyester resins. Eur Polym J 67:539–550. doi:10.1016/j.eurpolymj.2015.02.016

    Article  Google Scholar 

  13. Costa CSMF, Fonseca AC, Serra AC, Coelho JFJ (2016) Dynamic mechanical thermal analysis of polymer composites reinforced with natural fibers. Polym Rev 56(2):362–383. doi:10.1080/15583724.2015.1108334

    Article  Google Scholar 

  14. Suh DJ, Lim YT, Park OO (2000) The property and formation mechanism of unsaturated polyester–layered silicate nanocomposite depending on the fabrication methods. Polymer 41(24):8557–8563. doi:10.1016/S0032-3861(00)00216-0

    Article  Google Scholar 

  15. Morote-Martínez V, Pascual-Sánchez V, Martín-Martínez JM (2008) Improvement in mechanical and structural integrity of natural stone by applying unsaturated polyester resin-nanosilica hybrid thin coating. Eur Polym J 44(10):3146–3155. doi:10.1016/j.eurpolymj.2008.07.027

    Article  Google Scholar 

  16. Bora C, Gogoi P, Baglari S, Dolui SK (2013) Preparation of polyester resin/graphene oxide nanocomposite with improved mechanical strength. J Appl Polym Sci 129(6):3432–3438. doi:10.1002/app.39068

    Article  Google Scholar 

  17. Fuad MYA, Hanim H, Zarina R, Ishak ZAM, Hassan A (2010) Polypropylene/calcium carbonate nanocomposites—effects of processing techniques and maleated polypropylene compatibiliser. EXPRESS Polym Lett 4(10):611–620. doi:10.3144/expresspolymlett.2010.76

    Article  Google Scholar 

  18. Hanim H, Fuad MYA, Zarina R, Ishak ZAM, Hassan A (2008) Properties and structure of polypropylene/polyethylene-octene elastomer/nano CaCO3 composites. J Thermoplast Compos Mater 21(2):123–140. doi:10.1177/0892705707083634

    Article  Google Scholar 

  19. Kemal I, Whittle A, Burford R, Vodenitcharova T, Hoffman M (2009) Toughening of unmodified polyvinylchloride through the addition of nanoparticulate calcium carbonate. Polymer 50(16):4066–4079. doi:10.1016/j.polymer.2009.06.028

    Article  Google Scholar 

  20. Shi X, Zhang G, Siligardi C, Ori G, Lazzeri A (2015) Comparison of precipitated calcium carbonate/polylactic acid and halloysite/polylactic acid nanocomposites. J Nanomater 2015:11. doi:10.1155/2015/905210

    Google Scholar 

  21. Kim H-S, Park BH, Choi JH, Yoon J-S (2008) Mechanical properties and thermal stability of poly(l-lactide)/calcium carbonate composites. J Appl Polym Sci 109(5):3087–3092. doi:10.1002/app.28229

    Article  Google Scholar 

  22. Chow WS, Leu YY, Ishak ZAM (2012) Effects of SEBS-g-MAH on the properties of injection moulded poly(lactic acid)/nano-calcium carbonate composites. EXPRESS Polym Lett 6(6):503–510. doi:10.3144/expresspolymlett.2012.53

    Article  Google Scholar 

  23. Fonseca AC, Serra AC, Coelho JFJ, Gil MH, Simões PN (2013) Novel poly(ester amide)s from glycine and l-lactic acid by an easy and cost-effective synthesis. Polym Int 62(5):736–743. doi:10.1002/pi.4356

    Article  Google Scholar 

  24. Fonseca AC, Coelho JFJ, Gil MH, Simões PN (2014) Poly(ester amide)s based on l-lactic acid oligomers and glycine: the role of the central unit of the l-lactic acid oligomers and their molecular weight in the poly(ester amide)s properties. Polym Bull 71(12):3085–3109. doi:10.1007/s00289-014-1239-6

    Article  Google Scholar 

  25. Ro AJ, Huang SJ, Weiss RA (2008) Synthesis and thermal properties of telechelic poly(lactic acid) ionomers. Polymer 49(2):422–431. doi:10.1016/j.polymer.2007.11.038

    Article  Google Scholar 

  26. Mahmoud AH, Tay GS, Rozman HD (2011) A preliminary study on ultraviolet radiation-cured unsaturated polyester resin based on palm oil. Polym Plast Technol Eng 50(6):573–580. doi:10.1080/03602559.2010.543740

    Article  Google Scholar 

  27. Harmsen PFH, Hackmann MM, Bos HL (2014) Green building blocks for bio-based plastics. Biofuel Bioprod Biorefin 8(3):306–324. doi:10.1002/bbb.1468

    Article  Google Scholar 

  28. Jong Ed, Walsh P, Wellisch M (2012) Bio-based chemicals: value added products from biorefineries. Report produced on behalf of IEA Bioenergy - Task42 Biorefinery

  29. Bicak N, Karagoz B, Tunca U (2003) Self-curable polyester by a reaction of glycidol with maleic anhydride. J Polym Sci Part A Polym Chem 41(16):2549–2555. doi:10.1002/pola.10797

    Article  Google Scholar 

  30. Vilela C, Sousa AF, Fonseca AC, Serra AC, Coelho JFJ, Freire CSR et al (2014) The quest for sustainable polyesters—insights into the future. Polym Chem 5(9):3119–3141. doi:10.1039/C3PY01213A

    Article  Google Scholar 

  31. Farmer TJ, Castle RL, Clark JH, Macquarrie DJ (2015) Synthesis of unsaturated polyester resins from various bio-derived platform molecules. Int J Mol Sci 16(7):14912–14932. doi:10.3390/ijms160714912

    Article  Google Scholar 

  32. Cowie JMG, Haq Z (1977) Some aspects of the thermal stability of poly(alkyl itaconic acid esters). Br Polym J 9(3):246–250. doi:10.1002/pi.4980090315

    Article  Google Scholar 

  33. Shang S, Huang SJ, Weiss RA (2009) Synthesis and characterization of itaconic anhydride and stearyl methacrylate copolymers. Polymer 50(14):3119–3127. doi:10.1016/j.polymer.2009.05.012

    Article  Google Scholar 

  34. Jasinska L, Koning CE (2010) Unsaturated, biobased polyesters and their cross-linking via radical copolymerization. J Polym Sci Part A Polym Chem 48(13):2885–2895. doi:10.1002/pola.24067

    Article  Google Scholar 

  35. Barata I, Fonseca AC, Costa CSMF, Ferreira L, Júlio E, Coelho JFJ (2014) Insights into the thermo-mechanical properties of films cast from emulsion terpolymers. Prog Org Coat 77(4):790–797. doi:10.1016/j.porgcoat.2014.01.005

    Article  Google Scholar 

  36. Kalogeras IM, Lobland HEH (2012) The nature of the glassy state: structure and glass transitions. J Mater Educ 34(3–4):69–94

    Google Scholar 

  37. Brostow W, Lobland HEH, Narkis M (2006) Sliding wear, viscoelasticity, and brittleness of polymers. J Mater Res 21(9):2422–2428. doi:10.1557/jmr.2006.0300

    Article  Google Scholar 

  38. Petersson L, Oksman K (2006) Biopolymer based nanocomposites: comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Compos Sci Technol 66(13):2187–2196. doi:10.1016/j.compscitech.2005.12.010

    Article  Google Scholar 

  39. Sanchez EMS, Zavaglia CAC, Felisberti MI (2000) Unsaturated polyester resins: influence of the styrene concentration on the miscibility and mechanical properties. Polymer 41(2):765–769. doi:10.1016/S0032-3861(99)00184-6

    Article  Google Scholar 

  40. Melot D, Escaig B, Lefebvre JM, Eustache RP, Lauprêtre F (1994) Mechanical properties of unsaturated polyester resins in relation to their chemical structure I. Secondary relaxations and local motions. J Polym Sci Part B Polym Phys. 32(2):249–60. doi:10.1002/polb.1994.090320206

  41. Papageorgiou GZ, Achilias DS, Nanaki S, Beslikas T, Bikiaris D (2010) PLA nanocomposites: effect of filler type on non-isothermal crystallization. Thermochim Acta 511(1–2):129–139. doi:10.1016/j.tca.2010.08.004

    Article  Google Scholar 

Download references

Acknowledgements

Ana C. Fonseca acknowledges “Fundação para a Ciência e Tecnologia,” Grant: SFRH/BPD/99982/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana C. Fonseca.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 800 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fonseca, A.C., Costa, C.S.M.F., Marques, T.M.P. et al. The impact of a designed lactic acid-based crosslinker in the thermochemical properties of unsaturated polyester resins/nanoprecipitated calcium carbonate composites. J Mater Sci 52, 1272–1284 (2017). https://doi.org/10.1007/s10853-016-0422-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0422-6

Keywords

Navigation