Skip to main content
Log in

Droplet viscosity effects on dynamic hydrophobicity of a solid–liquid bulk composite prepared from porous glass

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hydrophobic porous glass plates were prepared by coating a fluorosilane (FAS17) onto a commercial porous glass (average pore size, approx. 1 μm). Based on the spreading coefficients from interface energies, we prepared solid–liquid bulk composites (SLBC) without direct contact between the solid surface and liquid droplet by impregnation of silicone oil into the silane-coated porous glass. Impregnating the oil into the porous glass decreased both the sliding angle (ca. 20° → ca. 5°) and contact angle (ca. 135° → ca. 100°). The sliding velocity of the liquid droplets on the SLBC decreased when the droplet viscosity was increased using a water–glycerin mixture. Analysis by particle image velocimetry revealed that increasing the viscosity remarkably decreases the slipping motion and increases the contribution of rolling. Results suggest that the practical internal fluidity of the droplets during sliding on the SLBC is governed by the combination of the droplet liquid and the oil impregnated into the porous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Nakajima A, Hashimoto K, Watanabe T (2001) Recent studies on super-hydrophobic films. Monatsh Chem 132:31–41

    Article  Google Scholar 

  2. Feng X, Jiang L (2006) Design and creation of superwetting/antiwetting surfaces. Adv Mater 18:3063–3078

    Article  Google Scholar 

  3. Ma M, Hill RM (2006) Superhydrophobic surfaces. Curr Op Coll Int Sci 11:193–202

    Article  Google Scholar 

  4. Blossey R (2003) Self-cleaning surfaces—virtual realities. Nature Mater 2:301–306

    Article  Google Scholar 

  5. Nakajima A (2011) Design of hydrophobic surfaces for liquid droplet control. NPG Asia Mater 3:49–56

    Article  Google Scholar 

  6. Zhang X, Wang L, Levänen E (2013) Superhydrophobic surfaces for the reduction of bacterial adhesion. RSC Adv 3:12003–12020

    Article  Google Scholar 

  7. Nguyen TPN, Brunet P, Coffinier Y, Boukherroub R (2010) Quantitative testing of robustness on superomniphobic surfaces by drop impact. Langmuir 26(23):18369–18373

    Article  Google Scholar 

  8. Bartolo D, Bouamrirene F (2006) Bouncing or sticky droplets: impalement transitions on superhydrophobic micropatterned surfaces. Europhys Lett 74(2):299–305

    Article  Google Scholar 

  9. Sakai M, Nakajima A, Fujishima A (2010) Removing an air layer from a superhydrophobic surface in flowing water. Chem Lett 39(5):482–484

    Article  Google Scholar 

  10. Nakajima A, Hashimoto K, Watanabe T, Takai K, Yamauchi G, Fujishima A (2000) Transparent superhydrophobic thin films with self-cleaning properties. Langmuir 16:7044–7047

    Article  Google Scholar 

  11. Wong T-S, Kang SH, Tang SKY, Smythe EJ, Hatton BD, Grinthal A, Aizenberg J (2011) Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477:443–447

    Article  Google Scholar 

  12. Qiu R, Zhang Q, Wang P, Jiang L, Hou J, Guo W, Zhang H (2014) Fabrication of slippery liquid-infused porous surface based on carbon fiber with enhanced corrosion inhibition property. Coll Surf A 453:132–141

    Article  Google Scholar 

  13. Chen L, Geissler A (2014) Transparent, slippery surfaces made with sustainable porous cellulose lauroyl ester films. ACS Appl Mater & Int 6(9):6969–6976

    Article  Google Scholar 

  14. Yao X, Hu Y, Grinthal A, Wong T-S, Mahadevan L, Aizenberg J (2013) Adaptive fluid-infused porous films with tunable transparency and wettability. Nature Mater 12(6):529–534

    Article  Google Scholar 

  15. Yang J, Song H, Ji H, Chen B (2014) Slippery lubricant-infused textured aluminum surfaces. J Adhes Sci Technol 28(19):1949–1957

    Article  Google Scholar 

  16. Lee C, Kim H, Nam Y (2014) Drop impact dynamics on oil-infused nanostructured surfaces. Langmuir 30(28):8400–8407

    Article  Google Scholar 

  17. Subramanyam S, Rykaczewski K, Varanasi K (2013) Ice adhesion on lubricant-impregnated textured surfaces. Langmuir 29(44):13414–13418

    Article  Google Scholar 

  18. Chen J, Dou R, Cui D, Zhang Q (2013) Robust prototypical anti-icing coatings with a self-lubricating liquid water layer between ice and substrate. ACS Appl Mater & Int 5(10):4026–4030

    Article  Google Scholar 

  19. Tsuruki Y, Sakai M, Isobe T, Matsushita S, Nakajima A (2014) Static and dynamic hydrophobicity of alumina-based porous ceramics impregnated with fluorinated oil. J Mater Res 29(14):1546–1555

    Article  Google Scholar 

  20. Sunny S, Vogel N, Howell C, Vu TL, Aizenberg J (2014) Lubricant-infused nanoparticulate coatings assembled by layer-by-layer deposition. Adv Funct Mater 24(42):6658–6667

    Article  Google Scholar 

  21. Boreyko J, Polizos G (2014) Air-stable droplet interface bilayers on oil-infused surfaces. Proc National Academy of Sci 111(21):7588–7593

    Article  Google Scholar 

  22. Anand S, Rykaczewski K, Subramanyam SB, Beysens D, Varanasi KK (2014) How droplets nucleate and grow on liquids and liquid impregnated surfaces. Soft Matter 11(1):69–80

    Article  Google Scholar 

  23. Lafuma A, Quéré D (2011) Slippery pre-suffused surfaces. Europhys Lett 96(5):56001

    Article  Google Scholar 

  24. Solomon B, Khalil K, Varanasi K (2014) Drag reduction using lubricant-impregnated surfaces in viscous laminar flow. Langmuir 30(36):10970–10976

    Article  Google Scholar 

  25. Takada Y, Sakai M, Isobe T, Matsushita S, Nakajima A (2015) Preparation and hydrophobicity of solid–liquid bulk composite using porous glass and fluorinated oil. J Mater Sci 50:7760–7769. doi:10.1007/s10853-015-9346-9

    Article  Google Scholar 

  26. Smith JD, Dhiman R, Anand S, Reza-Garduno E, Cohen RE, McKinley GH, Varanasi KK (2013) Droplet mobility on lubricant-impregnated surfaces. Soft Matter 9(6):1772–1780

    Article  Google Scholar 

  27. Sakurada Y, Suzuki S, Sakai M, Nakajima A, Kameshima Y, Okada K (2008) Effect of liquid viscosity on the internal fluidity of a droplet sliding on a fluoroalkylsilane coating. Chem Lett 37(7):688–689

    Article  Google Scholar 

  28. Wier KA, MaCarthy TJ (2006) Condensation on ultrahydrophobic surfaces and its effect on droplet mobility: ultrahydrophobic surfaces are not always water repellant. Langmuir 55(6):2433–2436

    Article  Google Scholar 

  29. Nakajima A, Nakagawa Y, Furuta T, Sakai M, Isobe T, Matsushita S (2013) Sliding of water droplets on smooth hydrophobic silane coatings with regular triangle hydrophilic regions. Langmuir 29(29):9269–9275

    Article  Google Scholar 

  30. Nakajima A, Miyamoto T, Sakai M, Isobe T, Matsushita S (2014) Comparative study of the impact and sliding behavior of water droplets on two different hydrophobic silane coatings. Appl Surf Sci 292:990–996

    Article  Google Scholar 

  31. Sakai M, Hashimoto A, Yoshida N, Suzuki S, Kameshima Y, Nakajima A (2007) An image analysis system for evaluating sliding behavior of a liquid droplet on a hydrophobic surface. Rev Sci Inst 78:045103

    Article  Google Scholar 

  32. Suzuki S, Nakajima A, Sakai M, Sakurada Y, Yoshida N, Hashimoto A, Kameshima Y, Okada K (2008) Slipping and rolling ratio of sliding acceleration for a water droplet sliding on fluoroalkylsilane coatings of different roughness. Chem Lett 37:58–59

    Article  Google Scholar 

  33. Yanagisawa K, Sakai M, Isobe T, Matsushita S, Nakajima A (2014) Investigation of droplet jumping on superhydrophobic coatings during dew condensation by the observation from two directions. Appl Surf Sci 315:212–221

    Article  Google Scholar 

  34. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  Google Scholar 

  35. Cassie ABD (1948) Contact angles. Discuss Faraday Soc 3:11–15

    Article  Google Scholar 

  36. Schellenberger F, Xie J, Encinas N, Hardy A, Klapper M, Papadopoulos P, Butt H-J, Vollmer D (2015) Direct observation of drops on slippery lubricant-infused surfaces. Soft Matter 11:7616–7626

    Article  Google Scholar 

  37. Suzuki S, Nakajima A, Sakurada Y, Sakai M, Yoshida N, Hashimoto A, Kameshima Y, Okada K (2009) Mass dependence of slipping/rolling ratio in sliding acceleration of water droplets on a smooth fluoroalkylsilane coating. J Jpn Soc Colour Mater 82(1):3–8

    Article  Google Scholar 

  38. Varagnolo S, Mistura G, Pierno M, Sbragaglia M (2015) Sliding droplets of xanthan solutions: a joint experimental and numerical study. The Euro Phys J E 38:126

    Article  Google Scholar 

  39. Wei Y, Rame E, Walker LM, Garoff S (2009) Dynamic wetting with viscous Newtonian and non-Newtonian fluids. J Phys Cond Matt 21:464126

    Article  Google Scholar 

  40. Bonn D, Eggers J, Indekeu J, Meunier J, Rolley J (2009) Wetting and spreading. Rev Mod Phys 81(2):739–805

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the staff of the Center of Advanced Materials Analysis (CAMA) at Tokyo Institute of Technology for SEM observations. This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (26630307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Nakajima.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yokoyama, K., Sakai, M., Isobe, T. et al. Droplet viscosity effects on dynamic hydrophobicity of a solid–liquid bulk composite prepared from porous glass. J Mater Sci 52, 595–604 (2017). https://doi.org/10.1007/s10853-016-0356-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0356-z

Keywords

Navigation