Skip to main content
Log in

Effects of extreme transverse deformation on the strength of UHMWPE single filaments for ballistic applications

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fibers used in both soft and hard body armor have very high longitudinal tensile strength and stiffness, but differ drastically in their transverse mechanical properties. Glass and carbon fibers are stiff and brittle in the transverse direction and easily shatter upon projectile impact unless they are cushioned within a soft matrix to disperse the load. In contrast, aramid fibers (e.g., Kevlar 29 and Twaron) and ultra-high-molecular-weight polyethylene (UHMWPE) fibers (e.g., Dyneema and Spectra) have quasi-plastic transverse behavior, with a low yield strength, and thus tend to flatten upon projectile impact, yet retain much of their tensile load-carrying capability. Thus, these polymer fibers are especially suitable for ‘soft’ body armor consisting of stacked sheets or fabrics, whereas the former glass and carbon fibers are useful mainly when aligned in a strong polymer matrix to form a thick plate. In this work, we report on a study of the tensile mechanical properties of single UHMWPE fibers (i.e., single filaments) that have been transversely deformed from their original cylindrical shape to form thin flat micro-tapes with a width-to-thickness ratio of up to 60:1. The deformed, ribbon-like fibers show very high retention in fiber strength, though with increased variability resulting from locally induced defects. Because transverse deformation resulted in more than a factor of three increase in surface area per unit length, the stress transfer length necessary to fully load a fiber near a break was found also to decrease by the same factor, as the corresponding interfacial shear stress remained the same. A Weibull probability analysis revealed that the increase in variability in fiber strength was consistent with a more pronounced length effect. These changes in fiber strength properties were understood through an alteration of the crystalline domains within the fibers due to the extreme deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Cunniff PM (1999) Dimensional parameters for optimization of textile-based body armor systems, Proceedings of 18th International Symposium of Ballistics, San Antonio, TX, pp 1303–1310

  2. Phoenix SL, Porwal PK (2003) A new membrane model for the ballistic impact response and V50 performance of multi-ply fibrous systems. Int J Solids Struct 40:6723–6765

    Article  Google Scholar 

  3. Marissen R (2011) Design with ultra-strong polyethylene fibers. Mater Sci Appl 2:319–330. doi:10.4236/msa.2011.25042

    Google Scholar 

  4. Afshari M, Sikkema DJ, Lee K, Bogle M (2008) High performance fibers based on rigid and flexible polymer fibers. Polym Rev 48:230–274. doi:10.1080/15583720802020129

    Article  Google Scholar 

  5. Phoenix SL, Yavuz AK, Porwal PK (2010) New interference approach for ballistic impact into stacked flexible composite body armor. AIAA J 48:490–501

    Article  Google Scholar 

  6. Phoenix SL, Heisserer U, van der Werff H, van der Jagt-Deutekom MJ (2016) Modeling and experiments on ballistic impact into UHMWPE yarns using flat and saddle-nosed projectiles, submitted

  7. Phoenix SL, Beyerlein IJ (2000) Statistical strength theory for fibrous composite materials, Chapter 1.19, in Vol. 1 of comprehensive composite materials, (6 volumes), (A. Kelly and C. Zweben, editors-in-chief; T.W. Chou, Volume 1 ed.) Pergamon (Elsevier Science)

  8. Li ZF, Netravali AN, Sachse W (1992) Ammonia plasma treatment of ultra-high strength polyethylene fibres for improved adhesion to epoxy resin. J Mater Sci 48:4625–4632

    Article  Google Scholar 

  9. Li ZF, Netravali AN (1992) Surface modification of UHSPE fibers through allylamine plasma deposition 2. Effect on fiber and fiber epoxy interface. J Appl Polym Sci 44:333–346

    Article  Google Scholar 

  10. Karthikeyan K, Russell BP (2014) Polyethylene ballistic laminates: failure mechanics and interface effect. Mater Des 63:115–125

    Article  Google Scholar 

  11. Attwood JP, Khaderi SN, Karthikeyan K, Fleck NA, O’Masta MR, Wadley HNG, Deshpande VS (2014) The out-of-plane compressive response of Dyneema composites. J Mech Phys Solids 70:200–226

    Article  Google Scholar 

  12. ASTM-C-1557-03 (2008) Standard test method for tensile strength and young’s modulus of fibers. ASTM International, West Conshohocken, PA. doi:10.1520/c1557-03r08

  13. Hudspeth M, Nie X, Chen W (2012) Dynamic failure of Dyneema SK76 single fibers under biaxial shear/tension. Polymer 53:5568–5574. doi:10.1016/j.polymer.2012.09.020

    Article  Google Scholar 

  14. Kim JH, Heckert NA, Leigh SD, Kobayashi H, McDonough WG, Rice KD, Holmes GA (2013) Effects of fiber gripping methods on the single fiber tensile test: I. Non-parametric statistical analysis. J Mater Sci 48:3623–3673. doi:10.1007/s10853-013-7142-y

    Article  Google Scholar 

  15. Kim JH, Heckert NA, Mates SP, Seppala JE, McDonough WG, Davis CS, Rice KD, Holmes GA (2015) Effect of fiber gripping method on the single fiber tensile test: II. Comparison of fiber gripping materials and loading rates. J Mater Sci 50:2049–2060. doi:10.1007/s10853-014-8736-8

    Article  Google Scholar 

  16. Brett Sanborn B, DiLeonardi AM, Weerasooriya T (2015) Tensile properties of Dyneema SK76 single fibers at multiple loading rates using a direct gripping method. J Dyn Behav Mater 1:4–14. doi:10.1007/s40870-014-0001-3

    Article  Google Scholar 

  17. Netravali AN, Caceres JM, Thompson MO, Renk TJ (1999) Surface modification of ultra-high strength polyethylene fibers for enhanced adhesion to epoxy resins using intense pulsed high-power ion beam. J Adhes Sci Technol 13:1331–1342

    Article  Google Scholar 

  18. Song Q, Netravali AN (1998) Excimer laser surface modification of ultra-high-strength polyethylene fibers for advanced adhesion with epoxy resins. Part 1: effect of laser operating parameters. J Adhes Sci Technol 12:957–982

    Article  Google Scholar 

  19. Song Q, Netravali AN (1998) Excimer laser surface modification of ultra-high-strength polyethylene fibers for advanced adhesion with epoxy resins. Part 2: effect of treatment environment. J Adhes Sci Technol 12:983–998

    Article  Google Scholar 

  20. Lin SP, Han JN, Yeh JT, Chang FC, Hsieh KH (2007) Surface modification and physical properties of various UHMWPE fiber reinforced modified epoxy composites. J Appl Polym Sci 104:655–665. doi:10.1002/app.25735

    Article  Google Scholar 

  21. Netravali AN, Bahners T (2010) Adhesion promotion in fibers and textiles using photonic surface modification. J Adhes Sci Technol 24:45–75

    Article  Google Scholar 

  22. Zhang X, Wang Y, Lu C, Cheng S (2011) Interfacial adhesion study of UHMWPE fiber-reinforced composites. Polym Bull 67:527–540. doi:10.1007/s00289-011-0491-2

    Article  Google Scholar 

  23. Jin X, Wang W, Bian L, Xiao C, Zheng G, Zhou C (2011) The effect of polypyrrole coatings on the adhesion and structure properties of UHMWPE fiber. Synt Met 161:984–989

    Article  Google Scholar 

  24. Hine PJ, Ward IM, Jordan ND, Olley RH, Bassett DC (2001) A comparison of the hot-compaction behavior of oriented, high-modulus, polyethylene fibers and tapes. J Macromol Sci Phys B40:959–989

    Article  Google Scholar 

  25. Russell BP, Karthikeyan K, Deshpande VS, Fleck NA (2013) The high strain rate response of ultra high molecular weight polyethylene: from fibre to laminate. Int J Impact Eng 60:1–9. doi:10.1016/j.ijimpeng.2013.03.010

    Article  Google Scholar 

  26. Phoenix SL, Skelton J (1974) Transverse compressive moduli and yield behavior of some orthotropic high modulus filaments. Text Res J 44:934–940

    Article  Google Scholar 

  27. Lim J, Zheng JQ, Masters K, Chen WNW (2011) Effects of gage length, loading rates, and damage on the strength of PPTA fibers. Int J Impact Eng 38:219–227. doi:10.1016/j.ijimpeng.2010.11.009

    Article  Google Scholar 

  28. Marinescu A, Benea B, Pruteanu M (2006) Lapping of brittle materials, Ch4. In: IOAN D, Marinescu D (eds) Handbook of lapping and polishing. CRC Press, Boca Raton. doi:10.1201/9781420017632.ch4

  29. Reggiani M, Tinti A, Taddei P, Visentin M, Stea S, De Clerico M, Fagnano C (2006) Phase transformation in explanted highly crystalline UHMWPE acetabular cups and debris after in vivo wear. J Mol Struct 785:98–105

    Article  Google Scholar 

  30. Hoffman JD, Lauritzen JI (1961) Crystallization of bulk polymers with chain folding: theory of growth of lamellar spherulites. J Res Natl Bur Stand 65A:297–336

    Article  Google Scholar 

  31. Hoffman JD, Davis GT Lauritzen JI (1978).In: Hannary NB (ed) Treatise on solid state chemistry, vol. 3. Plenum Press, New York

  32. Smith P, Lemstra PJ, Booij HC (1981) Ultradrawing of high-molecular-weight polyethylene cast from solution. II. Influence of initial polymer concentration. J Polym Sci B Polym Phys 19:877–888. doi:10.1002/pol.1981.180190514

    Article  Google Scholar 

  33. Berger L, Kausch HH, Plummer CJG (2003) Structure and deformation mechanisms in UHMWPE-fibres. Polymer 44:5884–5887. doi:10.1016/S0032-3861(03)00536-6

    Google Scholar 

  34. Lippits DR, Rastogi S, Hohne SGW (2006) Melting kinetics in polymers. Phys Rev Lett 96:218303. doi:10.1103/PhysRevLett.96.218303

    Article  Google Scholar 

  35. Lippits DR, Rastogi S, Hohne GWH, Mezari B, Magusin PCMM (2007) Heterogeneous distribution of entanglements in the polymer melt and its influence on crystallization. Macromolecules 40:1004–1010. doi:10.1021/ma0622837

    Article  Google Scholar 

  36. Yeh J-T, Lin S-C, Tu C-W, Hsie K-H, Chang F-C (2008) Investigation of the drawing mechanism of UHMWPE fibers. J Mater Sci 43:4892–4900

    Article  Google Scholar 

  37. Schwartz P, Netravali A, Sembach S (1986) Effects of strain rate and gauge length on the failure of ultrahigh strength polyethylene. Text Res J 56(8):502–508. doi:10.1177/004051758605600807

    Article  Google Scholar 

Download references

Acknowledgements

KG acknowledges the support from the undergraduate research fund of the Department of Materials Science and Engineering at Cornell University. SLP acknowledges the financial support under the National Institute of Standards and Technology under agreement ID 70NANB14H323.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart Leigh Phoenix.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovin, K., Phoenix, S.L. Effects of extreme transverse deformation on the strength of UHMWPE single filaments for ballistic applications. J Mater Sci 51, 8075–8086 (2016). https://doi.org/10.1007/s10853-016-0077-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0077-3

Keywords

Navigation