Skip to main content
Log in

The vertical deposition self-assembly process and the formation mechanism of poly(styrene-co-methacrylic acid) photonic crystals on polyester fabrics

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) photonic crystals with structural colors were successfully fabricated on soft polyester fabrics through the vertical deposition self-assembly of monodispersed poly(styrene-co-methacrylic acid) (P(St-MAA)) colloidal microspheres. The elaborate process was investigated by digital camera, 3D video microscope, and field emission scanning electron microscopy, and the formation mechanism and the self-assembly mode of photonic crystal on the fabrics were proposed. It was confirmed that during the evaporation of the colloidal dispersion medium, the surface of the dispersion moved down slowly, and the photonic crystal structure was deposited gradually onto the fabrics due to two effects of capillary force, one being from the meniscus between the P(St-MAA) colloidal microspheres and the vertical polyester fabric substrate, and another from the liquid bridges between adjacent P(St-MAA) colloidal microspheres. The array of colloidal microspheres underwent a disorder-to-order transition during the formation stage, generating a series of varying structural colors in the process. Different from those on solid nonporous substrates, the vertical deposition process firstly occurred in the gaps of fibers, then in the fiber surfaces, and eventually formed the ordered photonic crystal structure on polyester fabric substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58(20):2059–2062

    Article  Google Scholar 

  2. John S (1987) Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58(23):2486–2490

    Article  Google Scholar 

  3. Birner A, Wehrspohn RB, Gösele UM, Busch K (2001) Silicon-based photonic crystals. Adv Mater 13(6):377–388

    Article  Google Scholar 

  4. Yablonovitch E, Gmitter TJ (1989) Photonic band structure: the face-centered-cubic case. Phys Rev Lett. 63(18):1950

    Article  Google Scholar 

  5. Meseguer F (2005) Colloidal crystals as photonic crystals. Physicochem Eng Asp 270:1–7

    Article  Google Scholar 

  6. López C (2003) Materials aspects of photonic crystals. Adv Mater 15(20):1679–1704

    Article  Google Scholar 

  7. Koenderink AF, Vos WL (2005) Optical properties of real photonic crystals: anomalous diffuse transmission. J Opt Soc Am B 22(5):1075–1084

    Article  Google Scholar 

  8. Paquet C, Kumacheva E (2008) Nanostructured polymers for photonics. Mater Today 11(4):48–56

    Article  Google Scholar 

  9. Zhao Y, Shang L, Cheng Y, Gu Z (2014) Spherical colloidal photonic crystals. Acc Chem Res 47(12):3632–3642

    Article  Google Scholar 

  10. Joannopoulos JD, Villeneuve PR, Fan S (1997) Photonic crystals: putting a new twist on light. Nature 386(6621):143–149

    Article  Google Scholar 

  11. Bermel P (2013) Photonic crystals: turning data on a dime. Nat Photonics 7(2):89–91

    Article  Google Scholar 

  12. Biró LP, Kertész K, Vértesy Z, Márk GI, Bálint Z, Lousse V, Vigneron JP (2007) Living photonic crystals: butterfly scales-nanostructure and optical properties. Mater Sci Eng C 27(5):941–946

    Article  Google Scholar 

  13. González-Urbina L, Baert K, Kolaric B, Pérez-Moreno J, Clays K (2011) Linear and nonlinear optical properties of colloidal photonic crystals. Chem Rev 112(4):2268–2285

    Article  Google Scholar 

  14. McPhedran RC, Nicorovici NA, McKenzie DR, Rouseb GW, Bottenc LC, Welchd V, Parkerd AR, Wohlgennante M, Vardeny V (2003) Structural colours through photonic crystals. Phys B 338(1):182–185

    Article  Google Scholar 

  15. Zhang J, Sun Z, Yang B (2009) Self-assembly of photonic crystals from polymer colloids. Curr Opin Colloid Interface 14(2):103–114

    Article  Google Scholar 

  16. Liu G, Zhou L, Wu Y, Wang C, Fan Q, Shao J (2015) The fabrication of full color P (St-MAA) photonic crystal structure on polyester fabrics by vertical deposition self-assembly. J Appl Polym Sci 132(13):4385–4393

    Google Scholar 

  17. Pursiainen OL, Baumberg JJ, Winkler H, Viel B, Spahn P, Ruhl T (2007) Nanoparticle-tuned structural color from polymer opals. Opt Express 15(15):9553–9561

    Article  Google Scholar 

  18. Kang P, Ogunbo SO, Erickson D (2011) High resolution reversible color images on photonic crystal substrates. Langmuir 27(16):9676–9680

    Article  Google Scholar 

  19. Wang J, Wang L, Song Y, Jiang L (2013) Patterned photonic crystals fabricated by inkjet printing. J Mater Chem C 1(38):6048–6058

    Article  Google Scholar 

  20. Kim H, Ge JP, Kim J, Choi S, Lee H, Lee H, Park W, Yin Y, Kwon S (2009) Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal. Nat Photonics 3(9):534–540

    Article  Google Scholar 

  21. Kim J, Song Y, He L, Kim H, Lee H, Park W, Yin Y, Kwon S (2011) Real-time optofluidic synthesis of magnetochromatic microspheres for reversible structural color patterning. Small 7(9):1163–1168

    Article  Google Scholar 

  22. Gu Z, Horie R, Kubo S, Yamada Y, Fujishima A, Sato O (2002) Fabrication of a metal-coated three-dimensionally ordered macroporous film and its application as a refractive index sensor. Angew Chem 114(7):1201–1204

    Article  Google Scholar 

  23. Nakayama D, Takeoka Y, Watanabe M, Kataoka K (2003) Simple and precise preparation of a porous gel for a colorimetric glucose sensor by a templating technique. Angew Chem 115(35):4329–4332

    Article  Google Scholar 

  24. Wang H, Zhang K (2013) Photonic crystal structures with tunable structure color as colorimetric sensors. Sensors 13(4):4192–4213

    Article  Google Scholar 

  25. Fudouzi H, Xia Y (2003) Photonic papers and inks: color writing with colorless materials. Adv Mater 15(11):892–896

    Article  Google Scholar 

  26. Lee HS, Shim TS, Hwang H, Yang SM, Kim SH (2013) Colloidal photonic crystals toward structural color palettes for security materials. Chem Mater 25(13):2684–2690

    Article  Google Scholar 

  27. Shao J, Zhang Y, Fu G, Zhou L, Fan Q (2014) Preparation of monodispersed polystyrene microspheres and self-assembly of photonic crystals for structural colors on polyester fabrics. J Text Inst 105(9):938–943

    Article  Google Scholar 

  28. Zhou L, Liu G, Wu Y, Fan Q, Shao J (2014) The synthesis of core-shell monodisperse P (St-MAA) microspheres and fabrication of photonic crystals Structure with Tunable Colors on polyester fabrics. Fiber Polym 15(6):1112–1122

    Article  Google Scholar 

  29. Liu G, Zhou L, Wu Y, Wang C, Fan Q, Shao J (2015) Optical properties of three-dimensional P (St-MAA) photonic crystals on polyester fabrics. Opt Mater 42:72–79

    Article  Google Scholar 

  30. Xia Y, Gates B, Yin Y, Lu Y (2000) Monodispersed colloidal spheres: old materials with new applications. Adv Mater 12(10):693–713

    Article  Google Scholar 

  31. von Freymann G, Kitaev V, Lotsch BV, Ozin GA (2013) Bottom-up assembly of photonic crystals. Chem Soc Rev 42(7):2528–2554

    Article  Google Scholar 

  32. Comoretto D, Grassi R, Marabelli F, Andreanib LC (2003) Growth and optical studies of opal films as three-dimensional photonic crystals. Mater Sci Eng C 23(1):61–65

    Article  Google Scholar 

  33. Liu G, Shao J, Zhang Y, Wu Y, Wang C, Fan Q, Zhou L (2014) Self-assembly behavior of polystyrene/methacrylic acid (P (St-MAA)) colloidal microspheres on polyester fabrics by gravitational sedimentation. J Text Inst 1:1–13. doi:10.1080/00405000.2014.998011

    Google Scholar 

  34. Wang T, Keddie JL (2009) Design and fabrication of colloidal polymer nanocomposites. Adv Colloid Interface 147:319–332

    Article  Google Scholar 

  35. Klimonsky SO, Abramova VV, Sinitskii AS, Tretyakov YD (2011) Photonic crystals based on opals and inverse opals: synthesis and structural features. Russ Chem Rev 80(12):1191–1207

    Article  Google Scholar 

  36. Zhou Z, Zhao XS (2004) Flow-controlled vertical deposition method for the fabrication of photonic crystals. Langmuir 20(4):1524–1526

    Article  Google Scholar 

  37. Meijer JM, Hagemans F, Rossi L, Byelov DV, Castillo SIR, Snigirev A, Snigireva I, Philipse AP, Petukhov AV (2012) Self-assembly of colloidal cubes via vertical deposition. Langmuir 28(20):7631–7638

    Article  Google Scholar 

  38. Jiang Q, Gao J, Wei H, Yi L (2014) Fabrication of photonic crystal heterostructures by a simple vertical deposition technique. J Mater Sci 49:1832–1838. doi:10.1007/s10853-013-7871-y

    Article  Google Scholar 

  39. Wang PH, Pan CY (2000) Polymer-metal composite particles: metal particles on poly (St-co-MAA) microspheres. J Appl Polym Sci 75(14):1693–1698

    Article  Google Scholar 

  40. Zhang H, Duan R, Li F, Tang Q, Li WC (2007) Microscopy evidence of the face-centered cubic arrangement of monodisperse polystyrene nanospheres. Mater Des 28(3):1045–1049

    Article  Google Scholar 

  41. Wiscombe WJ (1980) Improved Mie scattering algorithms. Appl Opt 19(9):1505–1509

    Article  Google Scholar 

  42. Fu Y, Jin Z, Liu G, Yin Y (2009) Self-assembly of polystyrene sphere colloidal crystals by in situ solvent evaporation method. Synth Met 159(17):1744–1750

    Article  Google Scholar 

  43. Fudouzi H (2004) Fabricating high-quality opal films with uniform structure over a large area. J Colloid Interfaces Sci 275(1):277–283

    Article  Google Scholar 

  44. Schroden RC, Al-Daous M, Blanford CF, Stein A (2002) Optical properties of inverse opal photonic crystals. Chem Mater 14(8):3305–3315

    Article  Google Scholar 

  45. Waterhouse GIN, Waterland MR (2007) Opal and inverse opal photonic crystals: fabrication and characterization. Polyhedron 26(2):356–368

    Article  Google Scholar 

  46. Li Z, Wang J, Song Y (2011) Self-assembly of latex particles for colloidal crystals. Particuology 9(6):559–565

    Article  Google Scholar 

  47. Kuai SL, Hu XF, Hache A, Truong VV (2004) High-quality colloidal photonic crystals obtained by optimizing growth parameters in a vertical deposition technique. J CrystGrowth 267(1):317–324

    Google Scholar 

  48. Kralchevsky PA, Denkov ND (2001) Capillary forces and structuring in layers of colloid particles. Curr Opin Colloid Interfaces 6(4):383–401

    Article  Google Scholar 

  49. Obata KJ, Motokado T, Saito S, Takahashi K (2004) A scheme for micro-manipulation based on capillary force. J Fluid Mech 498:113–121

    Article  Google Scholar 

  50. Danov KD, Kralchevsky PA (2010) Capillary forces between particles at a liquid interface: general theoretical approach and interactions between capillary multipoles. Adv Colloid Interfaces 154(1):91–103

    Article  Google Scholar 

Download references

Funding

This study was funded by National Natural Science Foundation of China (Grant Nos. 51403188 and 51073142), Zhejiang Provincial Natural Science Foundation of China (Grant No. LY13E030004); the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20123318120005); the Fund for the Excellent Doctoral Thesis Program of Zhejiang Provincial Top Key Academic Discipline of Chemical Engineering and Technology in Zhejiang Sci-Tech University (Grant No. 11110132271412); The Young Researchers Foundation of Zhejiang Provincial Top Key Academic Discipline of Chemical Engineering and Technology, Zhejiang Sci-Tech University (ZYG2015011); and the “521” Talent Program of Zhejiang Sci-Tech University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lan Zhou or Jianzhong Shao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4563 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Zhou, L., Fan, Q. et al. The vertical deposition self-assembly process and the formation mechanism of poly(styrene-co-methacrylic acid) photonic crystals on polyester fabrics. J Mater Sci 51, 2859–2868 (2016). https://doi.org/10.1007/s10853-015-9594-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9594-8

Keywords

Navigation