Skip to main content
Log in

Impact of deposition conditions on the crystallization kinetics of amorphous GeTe films

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The speed at which phase change memory devices can operate depends strongly on the crystallization kinetics of the amorphous phase. To better understand factors that affect the crystallization rate, we have investigated crystallization of GeTe films as a function of their deposition temperatures and deposition rates, using X-ray synchrotron radiation and Raman spectroscopy. As-deposited films were found to be fully amorphous under all conditions, even though films deposited at higher temperatures and lower rates experienced lower effective quench rates. Non-isothermal transformation curves show that the apparent crystallization temperature of GeTe films decreases with increasing deposition temperature and decreasing deposition rate. It was found that this correlates with a decrease in the activation energy for nucleation (calculated using Kissinger’s analysis), while the activation energy for crystal growth remained unaffected. From Raman spectroscopy measurements, it was found that increasing the deposition temperature or decreasing the deposition rate, and therefore the effective quench rate, reduces the number of homopolar Te–Te bonds and thereby reduces the barrier to crystal nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ovshinsky SR (1968) Reversible electrical switching phenomena in disordered structures. Phys Rev Lett 21(20):1450–1453

    Article  Google Scholar 

  2. Kolobov AV, Fons P, Tominaga J (2007) Phase-change optical recording: past, present, future. Thin Solid Films 515(19):7534–7537

    Article  Google Scholar 

  3. Wetnic W, Wuttig M (2008) Reversible switching in phase-change materials. Mater Today 11(6):20–27. doi:10.1016/S1369-7021(08)70118-4

    Article  Google Scholar 

  4. Kolobov AV, Fons P, Frenkel AI, Ankudinov AL, Tominaga J, Uruga T (2004) Understanding the phase-change mechanism of rewritable optical media. Nat Mater 3:703–708

    Article  Google Scholar 

  5. Wuttig M, Yamada N (2007) Phase-change materials for rewriteable data storage. Nat Mater 6:824–832

    Article  Google Scholar 

  6. Lencer D, Salinga M, Grabowski B, Hickel T, Neugebauer J, Wuttig M (2008) A map for phase-change materials. Nat Mater 7:972–977

    Article  Google Scholar 

  7. Raoux S, Wenic W, Lelmini D (2010) Phase change materials and their application to nonvolatile memories. Chem Rev 110(1):240–267. doi:10.1021/cr900040x

    Article  Google Scholar 

  8. Lencer D, Salinga M, Wuttig M (2011) Design rules for phase-change materials in data storage applications. Adv Mater 23(18):2030–2058. doi:10.1002/adma.201004255

    Article  Google Scholar 

  9. Carria E, Mio AM, Gibilisco S, Miritello M, d’Acapito F, Grimaldi MG, Rimini E (2011) Polymorphism of amorphous Ge2Sb2Te5 probed by EXAFS and Raman spectroscopy. Electrochem Solid-State Lett 14(12):480–482. doi:10.1149/2.019112esl

    Article  Google Scholar 

  10. Mio AM, Carria E, D’Arrigo G, Gibilisco S, Miritello M, Grimaldi MG, Rimini E (2011) Nucleation and grain growth in as deposited and ion implanted GeTe thin films. J Non-Cryst Solids 357(10):2197–2201. doi:10.1016/j.jnoncrysol.2011.02.042

    Article  Google Scholar 

  11. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29(11):1702–1706

    Article  Google Scholar 

  12. Tamura N, MacDowell AA, Spolenak R, Valek BC, Bravman JC, Brown WL, Celestre RS, Padmore HA, Batterman BW, Patel JR (2003) Scanning X-ray microdiffraction with submicrometer white beam for strain/stress and orientation mapping in thin films. J Synchrotron Radiat 10:137–143. doi:10.1107/S0909049502021362

    Article  Google Scholar 

  13. Kunz M, Tamura N, Chen K, MacDowell AA, Celestre RS, Church MM, Fakra S, Domning EE, Glossinger JM, Kirschman JL, Morrison GY, Plate DW, Smith BV, Warwick T, Yashchuk VV, Padmore HA, Ustundag E (2009) A dedicated superbend X-ray microdiffraction beamline for materials, geo-, and environmental sciences at the advanced light source. Rev Sci Instrum 80(3):035108. doi:10.1063/1.3096295

    Article  Google Scholar 

  14. Andrikopoulos KS, Yannopoulos SN, Voyiatzis GA, Kolobov AV, Ribes M, Tominaga J (2006) Raman scattering study of the a-GeTe structure and possible mechanism for the amorphous to crystal transition. J Phys 18(3):965–979. doi:10.1088/0953-8984/18/3/014

    Google Scholar 

  15. Bales GS, Zangwill A (1991) Macroscopic model for columnar growth of amorphous films by sputter deposition. J Vac Sci Technol A 9(1):145–149. doi:10.1116/1.577116

    Article  Google Scholar 

  16. Tsukimoto S, Moriyama M, Murakami M (2004) Microstructure of amorphous tantalum nitride thin films. Thin Solid Films 460(1–2):222–226. doi:10.1016/j.tsf.2004.01.073

    Article  Google Scholar 

  17. Tamura N (2014) XMAS: a versatile tool for analyzing synchrotron X-ray microdiffraction data, in strain and dislocation gradients from diffraction: spatially-resolved local structure and defects. Imperial College Press, London

    Google Scholar 

  18. Matsunaga T, Kojima R, Yamada N, Kifune K, Kubota Y, Tabata Y, Takata M (2006) Single structure widely distributed in a GeTe − Sb2Te3 pseudobinary system: a rock salt structure is retained by intrinsically containing an enormous number of vacancies within its crystal. Inorg Chem 45(5):2235–2241. doi:10.1021/ic051677w

    Article  Google Scholar 

  19. Ghezzi GE, Morel R, Brenac A, Boudet N, Audier M, Fillot F, Maitrejean S, Hippert F (2012) Crystallization of Ge2Sb2Te5 nanometric phase change material clusters made by gas-phase condensation. Appl Phys Lett 101(23):233113–233114

    Article  Google Scholar 

  20. Gourvest E, Lhostis S, Kreisel J, Armand M, Maitrejean S, Roule A, Vallee C (2009) Evidence of germanium precipitation in phase-change Ge1-xTex thin films by Raman scattering. Appl Phys Lett 95(3):031908. doi:10.1063/1.3186077

    Article  Google Scholar 

  21. Carria E, Mio AM, Gibilisco S, Miritello M, Bongiorno C, Grimaldi MG, Rimini E (2012) Amorphous-crystal phase transitions in GexTe1-x alloys. J Electrochem Soc 159(2):H130–H139. doi:10.1149/2.048202jes

    Article  Google Scholar 

  22. Friedrich I, Weidenhof V, Njoroge W, Franz P, Wuttig M (2000) Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements. J Appl Phys 87(9):4130–4134

    Article  Google Scholar 

  23. Choi Y, Jung M, Lee Y-K (2009) Effect of heating rate on the activation energy for crystallization of amorphous Ge2Sb2Te5 thin film. Electrochem Solid-State Lett 12(7):F17–F19. doi:10.1149/1.3129137

    Article  Google Scholar 

  24. Abu El-Oyoun M (2009) Determination of the crystallization kinetic parameters of Ge22.5Te77.5 glass using model-free and model-fitting methods. J Alloys Compd 486(1–2):1–8. doi:10.1016/j.jallcom.2009.06.137

    Article  Google Scholar 

  25. Kasyap S, Patel A, Pratap A (2014) Crystallization kinetics of Ti20Zr20Cu60 metallic glass by isoconversional methods using modulated differential scanning calorimetry. J Therm Anal Calorim 116(3):1325–1336. doi:10.1007/s10973-014-3753-z

    Article  Google Scholar 

  26. Dohare C, Mehta N (2012) Iso-conversional kinetic study of non-isothermal crystallization in glassy Se98Ag2 alloy. J Therm Anal Calorim 109(1):247–253. doi:10.1007/s10973-011-1696-1

    Article  Google Scholar 

  27. Wei L, Biao Y, Wen-hai H (2005) Complex primary crystallization kinetics of amorphous Finemet alloy. J Non-Cryst Solids 351(40–42):3320–3324. doi:10.1016/j.jnoncrysol.2005.08.018

    Google Scholar 

  28. Majhi K, Varma KBR (2009) Crystallization kinetic studies of CaBi2B2O7 glasses by non-isothermal methods. J Mater Sci 44:385–391. doi:10.1007/s10853-008-3149-1

    Article  Google Scholar 

  29. Soares RS, Monteiro RCC, Lima MMRA, Sava BA, Elisa M (2014) Phase transformation and microstructural evolution after heat treatment of a terbium-doped lithium-aluminum phosphate glass. J Mater Sci 49:4601–4611. doi:10.1007/s10853-014-8162-y

    Article  Google Scholar 

  30. Lu QM, Libera M (1995) Microstructural measurements of amorphous GeTe crystallization by hot-stage optical microscopy. J Appl Phys 77(2):517–521. doi:10.1063/1.359034

    Article  Google Scholar 

  31. Chu JP, Lai YW, Lin TN, Wang SF (2000) Deposition and characterization of TiNi-base thin films by sputtering. Mater Sci Eng A A277(1–2):11–17. doi:10.1016/S0921-5093(99)00560-2

    Article  Google Scholar 

  32. Jeyasingh R, Fong SW, Lee J, Li Z, Chang K-W, Mantegazza D, Asheghi M, Goodson KE, Wong HSP (2014) Ultrafast characterization of phase-change material crystallization properties in the melt-quenched amorphous phase. Nano Lett 14(6):3419–3426. doi:10.1021/nl500940z

    Article  Google Scholar 

  33. Orava J, Hewak DW, Greer AL (2015) Fragile-to-strong crossover in supercooled liquid Ag-In-Sb-Te studied by ultrafast calorimetry. Adv Funct Mater 25(30):4851–4858. doi:10.1002/adfm.201501607

    Article  Google Scholar 

  34. Andrikopoulos KS, Yannopoulos SN, Kolobov AV, Fons P, Tominaga J (2007) Raman scattering study of GeTe and Ge2Sb2Te5 phase-change materials. J Phys Chem Solids 68(5–6):1074–1078. doi:10.1016/j.jpcs.2007.02.027

    Article  Google Scholar 

  35. Mazzarello R, Caravati S, Angioletti-Uberti S, Bernasconi M, Parrinello M (2010) Signature of tetrahedral Ge in the Raman spectrum of amorphous phase-change materials. Phys Rev Lett 104(8):085503

    Article  Google Scholar 

  36. Pine AS, Dresselhaus G (1971) Raman spectra and lattice dynamics of tellurium. Phys Rev B 4(2):356–371

    Article  Google Scholar 

  37. Fisher G, Tauc J, Verhelle Y (1974) Amorphous and liquid semiconductors. Taylor and Francis, London

    Google Scholar 

  38. Hosokawa S, Hari Y, Kouchi T, Ono I, Sato H, Taniguchi M, Hiraya A, Takata Y, Kosugi N, Watanabe M (1998) Electronic structures and local atomic configurations in amorphous GeSe and GeTe. J Phys 10(8):1931–1950. doi:10.1088/0953-8984/10/8/024

    Google Scholar 

Download references

Acknowledgements

The X-ray synchrotron experiments were carried out at Beamline 12.3.2 of the Advanced Light Source at Lawrence Berkeley National Laboratory, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory and University of California, Berkeley, California. The move of the micro-diffraction program from ALS beamline 7.3.3 onto to the ALS Superbend source 12.3.2 was enabled through the NSF Grant #0416243. Special thanks to Mr. Xinglin Wen for assistance in carrying out Raman spectroscopy and Mr. Yu Gao for his help in using the Lingo software. The authors would also like to thank the Singapore-MIT Alliance for funding this work and for providing a scholarship for C.Y. Khoo. The electron microscopy work was carried out in the Facility for Analysis, Characterization, Testing and Simulation (FACTS) in Nanyang Technological University, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl V. Thompson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoo, C.Y., Liu, H., Sasangka, W.A. et al. Impact of deposition conditions on the crystallization kinetics of amorphous GeTe films. J Mater Sci 51, 1864–1872 (2016). https://doi.org/10.1007/s10853-015-9493-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9493-z

Keywords

Navigation