Skip to main content
Log in

Thermally induced martensitic transformations in Cu-based shape memory alloy microwires

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Prior studies on shape memory alloys have identified size effects on the superelastic, i.e., stress-induced, hysteresis of martensitic transformations. However, literature on thermally induced transformations and size effects upon stored elastic energy is rather limited. In this work, a complementary sample size effect on the stored elastic energy of the transformation, and its effect on variant selection, is elaborated. Shape memory alloy microwires of a CuAlMnNi alloy are drawn with diameters varying between 45 and 255 μm and processed to obtain bamboo grain structures, where the grain boundaries lay almost perpendicular to the wire axis. Calorimetric and thermomechanical analyses of the microwires establish a decreasing contribution of stored elastic energy to the free energy of martensitic transformation as the wire diameter is reduced. This in turn affects the transformation ranges and macroscopic strain generated in constrained thermal cycling. The effect is shown to be associated with a decrease in number of interacting martensite variants as well as relaxation on free surfaces. The presented results indicate that thermal actuation of lightly biased SMA wires is enhanced in finer wires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chen Y, Schuh CA (2011) Size effects in shape memory alloy microwires. Acta Mater 59:537–553. doi:10.1016/j.actamat.2010.09.057

    Article  Google Scholar 

  2. Ozdemir N, Karaman I, Mara NA et al (2012) Size effects in the superelastic response of Ni54Fe19Ga27 shape memory alloy pillars with a two stage martensitic transformation. Acta Mater 60:5670–5685. doi:10.1016/j.actamat.2012.06.035

    Article  Google Scholar 

  3. Ueland SM, Schuh CA (2012) Superelasticity and fatigue in oligocrystalline shape memory alloy microwires. Acta Mater 60:282–292. doi:10.1016/j.actamat.2011.09.054

    Article  Google Scholar 

  4. Chen Y, Zhang X, Dunand DC, Schuh CA (2009) Shape memory and superelasticity in polycrystalline Cu–Al–Ni microwires. Appl Phys Lett 95:171906. doi:10.1063/1.3257372

    Article  Google Scholar 

  5. Ueland SM, Schuh CA (2013) Transition from many domain to single domain martensite morphology in small-scale shape memory alloys. Acta Mater 61:5618–5625. doi:10.1016/j.actamat.2013.06.003

    Article  Google Scholar 

  6. Dunand DC, Müllner P (2011) Size effects on magnetic actuation in Ni-Mn-Ga shape-memory alloys. Adv Mater 23:216–232

    Article  Google Scholar 

  7. Sutou Y, Omori T, Yamauchi K et al (2005) Effect of grain size and texture on pseudoelasticity in Cu–Al–Mn-based shape memory wire. Acta Mater 53:4121–4133. doi:10.1016/j.actamat.2005.05.013

    Article  Google Scholar 

  8. San Juan J, Nó ML, Schuh CA (2008) Superelasticity and shape memory in micro- and nanometer-scale pillars. Adv Mater 20:272–278. doi:10.1002/adma.200701527

    Article  Google Scholar 

  9. Waitz T, Kazykhanov V, Karnthaler HP (2004) Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Mater 52:137–147. doi:10.1016/j.actamat.2003.08.036

    Article  Google Scholar 

  10. Waitz T, Antretter T, Fischer FD et al (2007) Size effects on the martensitic phase transformation of NiTi nanograins. J Mech Phys Solids 55:419–444. doi:10.1016/j.jmps.2006.06.006

    Article  Google Scholar 

  11. Lovey FC, Chandrasekaran M (1982) Diffraction effects in β Cu-Zn and β-Cu-Zn-Al surface martensite transformation and microstructure. Le J Phys Colloq 43:C4–583. doi:10.1051/jphyscol:1982491

    Google Scholar 

  12. Ortin J, Planes A (1988) Thermodynamic analysis of thermal measurements in thermoelastic martensitic transformations. Acta Metall 36:1873–1889

    Article  Google Scholar 

  13. Otsuka K, Wayman C (1999) Shape memory materials. Cambridge University Press, London

    Google Scholar 

  14. Ortĺn J, Delaey L (2002) Hysteresis in shape-memory alloys. Int J Non Linear Mech 37:1275–1281

    Article  Google Scholar 

  15. Wada K, Liu Y (2008) On the two-way shape memory behavior in NiTi alloy—an experimental analysis. Acta Mater 56:3266–3277. doi:10.1016/j.actamat.2008.03.005

    Article  Google Scholar 

  16. Hamilton R, Sehitoglu H, Chumlyakov Y, Maier H (2004) Stress dependence of the hysteresis in single crystal NiTi alloys. Acta Mater 52:3383–3402. doi:10.1016/j.actamat.2004.03.038

    Article  Google Scholar 

  17. Liu Y, Favier D, Orgeas L (2004) Mechanistic simulation of thermomechanical behaviour of thermoelastic martensitic transformations in polycrystalline shape memory alloys. J Phys 115:37–45. doi:10.1051/jp4

    Google Scholar 

  18. Lovey FC, Torra V (1999) Shape memory in Cu-based alloys : phenomenological behavior at the mesoscale level and interaction of martensitic transformation with structural defects in Cu-Zn-Al. Prog Mater Sci 44:189–289

    Article  Google Scholar 

  19. Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55:257–315. doi:10.1179/095066010X12646898728363

    Article  Google Scholar 

  20. Sugimoto K, Kamei K, Nakaniwa M (1990) Cu-Al-Ni-Mn: a new shape memory alloy for high temperature applications. Butterworth-Heinemann, Oxford

    Google Scholar 

  21. Wu M, Semiatin S, Schetky L (1994) Fabrication of a Cu-Al-Ni-Mn shape memory alloy. Mater Charact 246:343–348

    Google Scholar 

  22. Morris MA (1992) High temperature properties of ductile Cu-Al-Ni shape memory alloys with boron additions. Acta Metall Mater 40:1573–1586

    Article  Google Scholar 

  23. Segui C, Cesari E (1995) Ordering and stabilization in quenched CuAlNiMnB alloys. J Mater Sci 30:5770–5776. doi:10.1007/BF00356719

    Article  Google Scholar 

  24. Chen L, Dunne D, Kennon N (1997) Determination of the parent grain orientation and habit plane normals for β′ 1 martensite in a Cu–Al–Ni–Mn shape memory alloy. J Mater Sci 2:3769–3773. doi:10.1023/A:1018671506278

    Article  Google Scholar 

  25. Sutou Y, Omori T, Kainuma R et al (2002) Enhancement of Superelasticity in Cu-Al-Mn-Ni shape- memory alloys by texture control. Metall Mater Trans A 33:2817–2824

    Article  Google Scholar 

  26. Morris MA, Lipe T (1994) Microstructural influence of Mn additions on thermoelastic and pseudoelastic properties of Cu-Al-Ni alloys. Acta Metall Mater 42:1583–1594. doi:10.1016/0956-7151(94)90368-9

    Article  Google Scholar 

  27. Ratchev P, Van Humbeeck J, Delaey L (1993) On the formation of 2H stacking sequence in 18R martensite plates in a precipitate containing Cu-Al-Ni-Ti-Mn alloy. Acta Metall Mater 41:2441–2449

    Article  Google Scholar 

  28. Omori T, Koeda N, Sutou Y et al (2007) Superplasticity of Cu-Al-Mn-Ni shape memory alloy. Mater Trans 48:2914–2918. doi:10.2320/matertrans.D-MRA2007879

    Article  Google Scholar 

  29. Patoor E, Supe Z, Ge D et al (1995) Micromechanical modelling of the superelastic behavior. Le J Phys. 5:C2

    Google Scholar 

  30. Bhattacharya K (2003) Microstructure of Martensite: why it forms and how it gives rise to the shape-memory effect. Oxford University Press, Oxford

    Google Scholar 

  31. Patoor E, Lagoudas DC, Entchev PB et al (2006) Shape memory alloys, Part I: general properties and modeling of single crystals. Mech Mater 38:391–429. doi:10.1016/j.mechmat.2005.05.027

    Article  Google Scholar 

  32. Jung Y, Papadopoulos P, Ritchie RO (2004) Constitutive modelling and numerical simulation of multivariant phase transformation in superelastic shape-memory alloys. Int J Numer Methods Eng 60:429–460. doi:10.1002/nme.940

    Article  Google Scholar 

  33. Thamburaja P, Anand L (2001) Polycrystalline shape-memory materials: effect of crystallographic texture. J Mech Phys Solids 49:709–737. doi:10.1016/S0022-5096(00)00061-2

    Article  Google Scholar 

  34. Gao X, Brinson L (2002) A simplified multivariant SMA model based on invariant plane nature of martensitic transformation. J Intell Mater Syst Struct 13:795–810. doi:10.1177/104538902032786

    Article  Google Scholar 

  35. Wollants P, Roos JR, Delaey L (1993) Thermally- and stress-induced thermoelastic martensitic transformations in the reference frame of equilibrium thermodynamics. Prog Mater Sci 37:227–288. doi:10.1016/0079-6425(93)90005-6

    Article  Google Scholar 

  36. San Juan J, Nó ML, Schuh CA (2009) Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nat Nanotechnol 4:415–419. doi:10.1038/nnano.2009.142

    Article  Google Scholar 

  37. Salzbrenner R, Cohen M (1979) On the thermodynamics of thermoelastic martensitic transformations. Acta Metall 27:739–748

    Article  Google Scholar 

  38. Romero R, Pelegrina JL (2003) Change of entropy in the martensitic transformation and its dependence in Cu-based shape memory alloys. Mater Sci Eng A 354:243–250. doi:10.1016/S0921-5093(03)00013-3

    Article  Google Scholar 

  39. Saburi T, Wayman C (1979) Crystallographic similarities in shape memory martensites. Acta Metall 27:979–995. doi:10.1016/0001-6160(79)90186-X

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. Army Research Laboratory and the U.S. Army Research Office through the Institute for Soldier Nanotechnologies, under contract number W911NF-13-D-0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Schuh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuncer, N., Qiao, L., Radovitzky, R. et al. Thermally induced martensitic transformations in Cu-based shape memory alloy microwires. J Mater Sci 50, 7473–7487 (2015). https://doi.org/10.1007/s10853-015-9306-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9306-4

Keywords

Navigation