Skip to main content
Log in

Triphenylamine-based broad band-gap polymers for bulk-heterojunction polymer solar cells

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Three triphenylamine-based broad band-gap polymers P1, P2, and P3 were designed and synthesized by Suzuki polycondensation. The optical band gaps of P1, P2, and P3 were 1.90, 19.5, and 1.99 eV, respectively. The calculated highest occupied molecular orbit energy levels of P1, P2, and P3 were −5.31, −5.29, and −5.32 eV, respectively, by cyclic voltammogram characterization. The hole mobilities of P1, P2, and P3 were 1.6 × 10−4, 5.9 × 10−5, and 4.1 × 10−5 cm2 v−1 s−1, respectively, by the space charge-limited current method. The polymer solar cells were fabricated under the device architecture of ITO/PEDOT:PSS/polymer:PC61BM or PC71BM/(PFN)/Al. All solar cells displayed the high open circuit voltages, where the highest ones can reach 0.90 V for P1 and P2. The P1- and P2-based solar cells gave the best power conversion efficiency of 3.37 and 3.34 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu YH, Zhao JB, Li ZK, Mu C, Ma W, Hu HW, Jiang K, Lin HR, Ade H, Yan H (2014) Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat Commun 5:5293. doi:10.1038/ncomms6293

    Article  Google Scholar 

  2. Zheng Z, Zhang SQ, Zhang MJ, Zhao K, Ye L, Chen Y, Yang B, Hou JH (2015) Highly efficient tandem polymer solar cells with a photovoltaic response in the visible light range. Adv Mater 27(7):1189–1194. doi:10.1002/adma.201404525

    Article  Google Scholar 

  3. Zhang SQ, Ye L, Zhao WC, Yang W, Wang Q, Hou JH (2015) Realizing over 10 % efficiency in polymer solar cell by device optimization. Sci China Chem 58(2):248–256. doi:10.1007/s11426-014-5273-x

    Article  Google Scholar 

  4. Chen JD, Cui CH, Li YQ, Zhou L, Ou QD, Li C, Li YF, Tang JX (2015) Single-junction polymer solar cells exceeding 10 % power conversion efficiency. Adv Mater 27(6):1035–1041. doi:10.1002/adma.201404535

    Article  Google Scholar 

  5. Liang YY, Yu LP (2010) A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance. Acc Chem Res 43(9):1227–1236. doi:10.1021/ar1000296

    Article  Google Scholar 

  6. He YJ, Chen HY, Hou JH, Li YF (2010) Indene-C60 bisadduct: a new acceptor for high-performance polymer solar cells. J Am Chem Soc 132(9):1377–1382. doi:10.1021/ja908602j

    Article  Google Scholar 

  7. Kooistra FB, Ihailetchi MVD, Popescu LM, Kronholm D, Blom PWM, Hummelen JC (2006) New C84 derivative and its application in a bulk heterojunction solar cell. Chem Mater 18(13):3068–3073. doi:10.1021/cm052783z

    Article  Google Scholar 

  8. Inganäs O, Zhang FL, Tvingstedt K, Andersson LM, Hellstrom S, Andersson MR (2010) Polymer photovoltaics with alternating copolymer/fullerene blends and novel device architectures. Adv Mater 22(20):E100–E116. doi:10.1002/adma.200904407

    Article  Google Scholar 

  9. Wang M, Li CH, Lv AF, Wang ZH, Bo ZS (2012) Spirobifluorene-based conjugated polymers for polymer solar cells with high open-circuit voltage. Macromolecules 45(7):3017–3022. doi:10.1021/ma202752h

    Article  Google Scholar 

  10. Du C, Li CH, Li WW, Chen X, Bo ZS, Veit C, Ma ZF, Wuerfel U, Zhu HF, Hu WP, Zhang FL (2011) 9-alkylidene-9H-fluorene-containing polymer for high-efficiency polymer solar cells. Macromolecules 44(19):7617–7624. doi:10.1021/ma201477b

    Article  Google Scholar 

  11. Zhang B, Hu XW, Wang MQ, Xiao HP, Gong X, Yang W, Cao Y (2012) Highly efficient polymer solar cells based on poly(carbazole-alt-thiophene-benzofurazan). New J Chem 36(10):2042–2047. doi:10.1039/C2NJ40309A

    Article  Google Scholar 

  12. Blouin N, Michaud A, Leclerc M (2007) A low-bandgap poly (2,7-carbazole)derivative for use in high-performance solar cells. Adv Mater 19(17):2295–2300. doi:10.1002/adma.200602496

    Article  Google Scholar 

  13. Qin RP, Li WW, Li CH, Du C, Veit C, Schleiermacher HF, Andersson M, Bo ZS, Liu ZP, Inganäs O, Wuerfel U, Zhang FL (2009) A planar copolymer for high efficiency polymer solar cells. J Am Chem Soc 131(41):14612–14613. doi:10.1021/ja9057986

    Article  Google Scholar 

  14. Xia YJ, Su XH, He ZC, Ren X, Wu HB, Cao Y, Fan DW (2010) An alternating copolymer derived from indolo[3,2-b]carbazole and 4,7-di(thieno[3,2-b]thien-2-yl)-2,1,3-benzothiadiazole for photovoltaic cells. Macromol Rapid Commun 31(14):1287–1292. doi:10.1002/marc.201000062

    Article  Google Scholar 

  15. Zhou EJ, Yamakawa SP, Zhang Y, Tajima K, Yang C, Hashimoto K (2009) Indolo[3,2-b]carbazole-based alternating donor–acceptor copolymers: synthesis, properties and photovoltaic application. J Mater Chem 19(41):7730–7737. doi:10.1039/B912258C

    Article  Google Scholar 

  16. Lu JP, Liang FS, Drolet N, Ding JF, Tao Y, Movileanu R (2008) Crystalline low band-gap alternating indolocarbazole and benzothiadiazole-cored oligothiophene copolymer for organic solar cell applications. Chem Commun 42:5315–5317. doi:10.1039/B811031J

    Article  Google Scholar 

  17. Tsai JH, Chueh CC, Lai MH, Wang CF, Chen WC, Ko BT, Ting C (2009) Synthesis of new indolocarbazole-acceptor alternating conjugated copolymers and their applications to thin film transistors and photovoltaic cells. Macromolecules 42(6):1897–1905. doi:10.1021/ma802720n

    Article  Google Scholar 

  18. Wang EG, Wang L, Lan LF, Luo C, Zhuang WL, Peng JB, Cao Y (2008) High-performance polymer heterojunction solar cells of a polysilafluorene derivative. Appl Phys Lett 92(3):033307. doi:10.1063/1.2836266

    Article  Google Scholar 

  19. Liang YY, Wu Y, Feng DQ, Tsai ST, Son HJ, Li G, Yu LP (2009) Development of new semiconducting polymers for high performance solar cells. J Am Chem Soc 131(1):56–57. doi:10.1021/ja808373p

    Article  Google Scholar 

  20. Hou JH, Chen HY, Zhang SQ, Chen RI, Yang Y, Wu Y, Li G (2009) Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells. J Am Chem Soc 131(43):15586–15587. doi:10.1021/ja9064975

    Article  Google Scholar 

  21. Chen HY, Hou JH, Zhang SQ, Liang YY, Yang GW, Yang Y, Yu LP, Wu Y, Li G (2009) Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photonics 3:649–653. doi:10.1038/nphoton.2009.192

    Article  Google Scholar 

  22. Tao YT, Wang Q, Ao L, Zhong C, Qin JG, Yang CL, Ma DG (2010) Molecular design of host materials based on triphenylamine/oxadiazole hybrids for excellent deep-red phosphorescent organic light-emitting diodes. J Mater Chem 20(9):1759–1765. doi:10.1039/B920227G

    Article  Google Scholar 

  23. Shen P, Sang GY, Lu JJ, Zhao B, Wan MX, Zou YP, Li YF, Tan ST (2008) Effect of 3D ππ stacking on photovoltaic and electroluminescent properties in triphenylamine-containing poly(p-phenylenevinylene) derivatives. Macromolecules 41(15):5716–5722. doi:10.1021/ma800847f

    Article  Google Scholar 

  24. Zhou LL, Jia CY, Wan ZQ, Chen XM, Yao XJ (2013) Effect of imidazole derivatives in triphenylamine-based organic dyes for dye-sensitized solar cells. Org Electron 14(7):1755–1762. doi:10.1016/j.orgel.2013.04.004

    Article  Google Scholar 

  25. Yasuda T, Shinohara Y, Matsuda T, Han L, Ishi-I T (2012) Improved power conversion efficiency of bulk-heterojunction organic solar cells using a benzothiadiazole-triphenylamine polymer. J Mater Chem 22(6):2539–2544. doi:10.1039/C2JM14671A

    Article  Google Scholar 

  26. Gao L, Zhang J, He C, Shen SL, Zhang Y, Liu HT, Sun QJ, Li YF (2013) Synthesis and photovoltaic properties of a star-shaped molecule based on a triphenylamine core and branched terthiophene end groups. Sci China Chem 56(7):997–1003. doi:10.1007/s11426-013-4878-9

    Article  Google Scholar 

  27. Zhang J, Deng D, He C, He YJ, Zhang MJ, Zhang ZG, Zhang ZJ, Li YF (2011) Solution-processable star-shaped molecules with triphenylamine core and dicyanovinyl end groups for organic solar cells. Chem Mater 23(3):817–822. doi:10.1021/cm102077j

    Article  Google Scholar 

  28. Zhang J, Yang Y, He C, He YJ, Zhao GJ, Li YF (2009) Solution-processable star-shaped photovoltaic organic molecule with triphenylamine core and benzothiadiazole–thiophene arms. Macromolecules 42(20):7619–7622. doi:10.1021/ma901896n

    Article  Google Scholar 

  29. He C, He QG, Yi YP, Wu GL, Bai FL, Shuai ZG, Li YF (2008) Improving the efficiency of solution processable organic photovoltaic devices by a star-shaped molecular geometry. J Mater Chem 18(34):4085–4090. doi:10.1039/B807456A

    Article  Google Scholar 

  30. Li JM, Deng XP, Zhang ZY, Wang YF, Liu Y, He KQ, Huang K, Tao Q, Quan LX, Zhu WG (2012) Tuning photovoltaic performance of 9,9-dioctylfluorene-alt-5,7-bis(thiophen-2-yl)-2,3-biphenylthieno[3,4-b]pyrazine copolymeric derivatives by attaching additional donor units in pendant phenyl ring. J Polym Sci Part A 50(22):4686–4694. doi:10.1002/pola.26284

    Article  Google Scholar 

  31. He C, Zhong CM, Wu HB, Yang RQ, Yang W, Huang F, Bazan GC, Cao Y (2010) Origin of the enhanced open-circuit voltage in polymer solar cells via interfacial modification using conjugated polyelectrolytes. J Mater Chem 20(13):2617–2622. doi:10.1039/B921775D

    Article  Google Scholar 

  32. He ZC, Zhong CM, Huang X, Wong WY, Wu HB, Chen LW, Su SJ, Cao Y (2011) Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv Mater 23(40):4636–4643. doi:10.1002/adma.201103006

    Article  Google Scholar 

  33. Scharber MC, Muhlbacher D, Koppe M, Denk P, Waldorf C, Heeger AJ, Brabec CJ (2006) Design rules for donors in bulk-heterojunction solar cells-towards 10 % energy-conversion efficiency. Adv Mater 18(6):789–794. doi:10.1002/adma.200501717

    Article  Google Scholar 

  34. Zhao GJ, He YJ, Li YF (2010) 6.5 % Efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C60 bisadduct by device optimization. Adv Mater 22(39):4355–4358. doi:10.1002/adma.201001339

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Nature Science Foundation of China (Nos. 51273069, 91333206), the Research Fund for the Doctoral Program of Higher Education of China (No. 20130172110005), and the Fundamental Research Funds for the Central Universities (No. 2014ZB0017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Liang, J., Hu, L. et al. Triphenylamine-based broad band-gap polymers for bulk-heterojunction polymer solar cells. J Mater Sci 50, 5609–5619 (2015). https://doi.org/10.1007/s10853-015-9111-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9111-0

Keywords

Navigation