Skip to main content
Log in

Development of a tight-binding model for Cu and its application to a Cu-heat-sink under irradiation

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An environment-dependent tight-binding potential model for copper within the framework of quantum theory is developed. Our benchmark calculations indicate that this model has good performance in describing the elastic property, the stability and the vibrational property of bulk copper, as well as in handling the clusters, the surfaces and the defective Cu systems. By combining this model with molecular dynamics, we study how the evolution of structural defects arising from the irradiation of the energetic particles influences the mechanical and the thermal properties of the copper-heat-sinks in fusion reactors. Based on our simulations, the heat blockade in the irradiated Cu-heat-sinks is predicted. This finding is valuable for the development of wall materials in fusion reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kalinin G, Matera R (1998) Comparative analysis of copper alloys for the heat sink of plasma facing components in ITER. J Nucl Mater 258–263:345–350

    Article  Google Scholar 

  2. Itoh Y, Takahashi M, Takano H (1996) Design of tungsten/copper graded composite for high heat flux components. Fusion Eng Des 31:279–289

    Article  Google Scholar 

  3. Zhou ZJ, Song SX, Du J, Zhong ZH, Ge CC (2007) Performance of W/Cu FGM based plasma facing components under high heat load test. J Nucl Mater 363:1309–1314

    Article  Google Scholar 

  4. Diaz de la Rubia T, Averback RS, Benedek R, King WE (1987) Role of thermal spikes in energetic displacement. Phys Rev Lett 59:1930–1933

    Article  Google Scholar 

  5. Diaz de la Rubia T, Guinan MW (1991) New mechanism of defect production in metals: a molecular-dynamics study of interstitial-dislocation-loop formation in high-energy displacement cascades. Phys Rev Lett 66:2766–2769

    Article  Google Scholar 

  6. Foreman AJE, Phythian WJ, English CA (1992) The molecular dynamics simulation of irradiation damage cascades in copper using a many-body potential. Philos Mag A 66(5):671–695

    Article  Google Scholar 

  7. Foreman AJE, Phythian WJ, English CA (1994) Molecular dynamics simulation of irradiation damage cascades in copper using a many-body potential. Radiat Eff Defect Solid 129:25–30

    Article  Google Scholar 

  8. Bai XM, Voter AF, Hoagland RG, Nastasi M, Uberuaga BP (2010) Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science 327:1631–1634

    Article  Google Scholar 

  9. Nordlund K, Averback RS (1997) Point defect movement and annealing in collision cascades. Phys Rev B 56:2421–2431

    Article  Google Scholar 

  10. Nordlund K, Ghaly M, Averback RS, Caturla M, Rubia TD, Tarus J (1998) Defect production in collision cascades in elemental semiconductors and fcc metals. Phys Rev B 57:7556–7570

    Article  Google Scholar 

  11. Karolewski MA (2001) Tight-binding potentials for sputtering simulations with FCC and BCC metals. Radiat Eff Defect Solid 153:239–255

    Article  Google Scholar 

  12. Slater JC, Koster GF (1954) Simplified LCAO method for the periodic potential problem. Phys Rev 94:1498–1524

    Article  Google Scholar 

  13. Tang MS, Wang CZ, Chan CT, Ho KM (1996) Environment-dependent tight-binding potential model. Phys Rev B 53:979–982

    Article  Google Scholar 

  14. Kwon I, Biswas R, Wang CZ, Ho KM, Soukoulis CM (1994) Transferable tight-binding models for silicon. Phys Rev B 49:7242–7250

    Article  Google Scholar 

  15. Wang CZ, Pan BC, Ho KM (1999) An environment-dependent tight-binding potential for Si. J Phys 11:2043–2049

    Google Scholar 

  16. Bernstein N, Mehl MJ, Papaconstantopoulos DA (2002) Nonorthogonal tight-binding model for germanium. Phys Rev B 66:075212

    Article  Google Scholar 

  17. Li PF, Pan BC (2012) Transferable tight-binding potential for germanium. J Phys 24:305802

    Google Scholar 

  18. Haas H, Wang CZ, Fähnle M, Elsässer C, Ho KM (1998) Environment-dependent tight-binding model for molybdenum. Phys Rev B 57:1461–1470

    Article  Google Scholar 

  19. Mehl MJ, Papaconstantopoulos DA (1996) Applications of a tight-binding total-energy method for transition and noble metals: elastic constants, vacancies, and surfaces of monatomic metals. Phys Rev B 54:4519–4529

    Article  Google Scholar 

  20. Cazorla C, Alfé D, Gillan MJ (2009) Melting properties of a simple tight-binding model of transition metals. I. The region of half-filled d-band. J Chem Phys 130:174707

    Article  Google Scholar 

  21. Lekka CE, Bernstein N, Papaconstantopoulos DA, Mehl MJ (2009) Properties of bcc metals by tight-binding total energy simulations. Mater Sci Eng B 163:8–16

    Article  Google Scholar 

  22. Sha XW, Papaconstantopoulos DA, Mehl MJ, Bernstein N (2011) Tight-binding study of hcp Zn and Cd. Phys Rev B 84:184109

    Article  Google Scholar 

  23. Nguyen-Manh D, Pettifor DG, Vitek V (2000) Analytic environment-dependent tight-binding bond integrals: application to \({\rm MoSi}_{2}\). Phys Rev Lett 85:4136–4139

    Article  Google Scholar 

  24. Nilsson G, Rolandson S (1973) Lattice dynamics of copper at 80 K. Phys Rev B 7:2393–2400

    Article  Google Scholar 

  25. Brandes EA (1983) Smithells metals reference book, 6th edn. Butterworths, London

    Google Scholar 

  26. David RL (2009) Handbook of chemistry and physics, 90th edn. CRC Press, Boca Raton

    Google Scholar 

  27. Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in matter. Pergamon, New York, pp 93–129

    Google Scholar 

  28. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561

    Article  Google Scholar 

  29. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  Google Scholar 

  30. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  31. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687

    Article  Google Scholar 

  32. Siegel RW (1978) Vacancy concentrations in metals. J Nucl Mater 69–70:117–146

    Article  Google Scholar 

  33. Balluffi RW (1978) Vacancy defect mobilities and binding energies obtained from annealing studies. J Nucl Mater 69–70:240–263

    Article  Google Scholar 

  34. Ehrhart P (1978) The configuration of atomic defects as determined from scattering studies. J Nucl Mater 69–70:200–214

    Article  Google Scholar 

  35. Lam NQ, Degens L, Doan NV (1983) Calculations of the properties of self-interstitials and vacancies in the face-centred cubic metals Cu, Ag and Au. J Phys 13:2503–2516

    Article  Google Scholar 

  36. Lee BJ, Shim JH, Baskes MI (2003) Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method. Phys Rev B 68:144112

    Article  Google Scholar 

  37. Cleri F, Rosato V (1993) Tight-binding potentials for transition metals and alloys. Phys Rev B 48:22–33

    Article  Google Scholar 

  38. Li XC, Shu X, Liu YN, Gao F, Lu GH (2011) Modified analytical interatomic potential for a WH system with defects. J Nucl Mater 408:12–17

    Article  Google Scholar 

  39. Sébastien LR, Valeri P (2015) Mean square displacement of atoms-M.S.D. http://isaacs.sourceforge.net/phys/msd.html. Accessed 3 Jan 2015

  40. Carter CB, Ray ILF (1977) On the stacking-fault energies of copper alloys. Philos Mag 35:189–200

    Article  Google Scholar 

  41. Heino P, Perondi L, Kaski K, Ristolainen E (1999) Stacking-fault energy of copper from molecular-dynamics simulations. Phys Rev B 60:14625–14631

    Article  Google Scholar 

  42. Tyson WR, Miller WA (1977) Surface free energies of solid metals: estimation from liquid surface tension measurements. Surf Sci 62:267–276

    Article  Google Scholar 

  43. Spasov VA, Lee TH, Ervin KM (2000) Threshold collision-induced dissociation of anionic copper clusters and copper cluster monocarbonyls. J Chem Phys 112:1713–1720

    Article  Google Scholar 

  44. Jug K, Zimmermann B, Calaminici P, Köster AM (2002) Structure and stability of small copper clusters. J Chem Phys 116:4497–4507

    Article  Google Scholar 

  45. Krasheninnikov AV, Nordlund K (2010) Ion and electron irradiation-induced effects in nanostructured materials. J Appl Phys 107:071301

    Article  Google Scholar 

  46. Berendsen HJC, Postma JPM, Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  Google Scholar 

  47. Ghaly M, Averback RS (1994) Effect of viscous flow on ion damage near solid surfaces. Phys Rev Lett 72:364–367

    Article  Google Scholar 

  48. Tang M, Colombo L, Zhu J, Rubia TD (1997) Intrinsic point defects in crystalline silicon: tight-binding molecular dynamics studies of self-diffusion, interstitial-vacancy recombination, and formation volumes. Phys Rev B 55:14279–14289

    Article  Google Scholar 

  49. Caturla MJ, Rubia TD, Marques LA, Gilmer GH (1996) Ion-beam processing of silicon at keV energies: a molecular-dynamics study. Phys Rev B 54:16683–16695

    Article  Google Scholar 

  50. Scheidemantel TJ, Ambrosch-Draxl C, Thonhauser T, Badding JV, Sofo JO (2003) Transport coefficients from first-principles calculations. Phys Rev B 68:125210

    Article  Google Scholar 

  51. Madsen GKH (2006) Automated search for new thermoelectric materials: the case of LiZnSb. J Am Chem Soc 128:12140–12146

    Article  Google Scholar 

  52. Gao X, Uehara K, Klug DD, Patchkovskii S, Tse JS, Tritt TM (2005) Theoretical studies on the thermopower of semiconductors and low-band-gap crystalline polymers. Phys Rev B 72:125202

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Magnetic Confinement Fusion Science Program with No, of 2013GB107004, the National Science Foundation of China (Grant No. NSFC11275191 and NSFC11105140). The supercomputer centre of USTC is acknowledged for computational support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bicai Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, W., He, H. & Pan, B. Development of a tight-binding model for Cu and its application to a Cu-heat-sink under irradiation. J Mater Sci 50, 5684–5693 (2015). https://doi.org/10.1007/s10853-015-9097-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9097-7

Keywords

Navigation