Skip to main content
Log in

Bandgap engineering of oxygen-rich TiO2+x for photocatalyst with enhanced visible-light photocatalytic ability

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

TiO2, as a photocatalyst, has attracted substantial attention since the discovery of water splitting property on the TiO2 electrodes. However, its efficiency of water splitting is limited by its wide bandgap (~3.0 eV). Here, we predict its bandgap can be efficiently reduced by incorporating excess oxygen atoms on the basis of first-principles calculations. We show that the excess oxygen is more stable to bond to Ti atom and to form ordered structure. The narrowing of bandgap in oxygen-rich TiO2 originates from the ordered excess oxygen because the coupling between them shifts the conduction band bottom down. The bandgap of TiO2+x decreases with the increase of the density of excess oxygen (x). A bandgap of 1.3 eV can be achieved at x = 0.5. The oxygen-rich TiO2 shows intrinsic semiconducting characteristic without localized states within the bandgap, indicating lower trapping centers. The enhancement of visible-light absorption due to the narrowed bandgap and the intrinsic semiconductor characteristic result in the improvement of the photocatalytic performance in oxygen-rich TiO2+x .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fujishima A, Hashimoto K, Watanabe T (1999) TiO2 photocatalysis. Fundamentals and applications. BKC, inc, Tokyo, pp 14–176

    Google Scholar 

  2. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  Google Scholar 

  3. Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces—principles, mechanism, and selected results. Chem Rev 95:735–758

    Article  Google Scholar 

  4. Chen XB, Shen SH, Guo LJ, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570

    Article  Google Scholar 

  5. Osterloh FE (2008) Inorganic materials as catalysts for photochemical splitting of water. Chem Mater 20:35–54

    Article  Google Scholar 

  6. Fujishima A, Honda K (1972) Electrochemical photocatalysis of water at a semiconductor electrode. Nature 238:37–38

    Article  Google Scholar 

  7. Liu XZ, Fang PF, Liu Y, Liu Z, Lu DZ, Gao YP, Chen FT, Wang DH, Dai YQ (2014) Effect of holmium doping on the structure and photocatalytic behavior of TiO2-based nanosheets. J Mater Sci 49:8063–8073. doi:10.1007/s10853-014-8514-7

    Article  Google Scholar 

  8. Asahi A, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    Article  Google Scholar 

  9. Shen JY, Wu YN, Fu L, Zhang BR, Li FT (2014) Preparation of doped TiO2 nanofiber membranes through electrospinning and their application for photocatalytic degradation of malachite green. J Mater Sci 49:2303–2314. doi:10.1007/s10853-013-7928-y

    Article  Google Scholar 

  10. Wu XY, Yin S, Dong Q, Liu B, Wang YH, Sekino T, Lee SW, Sato T (2013) UV visible and near-infrared lights induced NOx destruction activity of (Yb, Er)-NaYF4/C-TiO2 composite. Sci Rep 3:2918

    Google Scholar 

  11. Chen XX, Cai HY, Tang QW, Yang YC, He BL (2014) Solar photocatalysts from Gd-La codoped TiO2 nanoparticles. J Mater Sci 49:3371–3378. doi:10.1007/s10853-014-8045-2

    Article  Google Scholar 

  12. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  Google Scholar 

  13. Ali A, Ruzybayev I, Yassitepe E, Shah SI, Bhatti AS (2013) Interplay of vanadium states and oxygen vacancies in the structural and optical properties of TiO2: V thin films. J Phys Chem C 117:19517–19524

    Article  Google Scholar 

  14. Slamet Tristantini D, Valentina Ibadurrohman M (2013) Photocatalytic hydrogen production from glycerol-water mixture over Pt-N-TiO2 nanotube photocatalyst. Int J Hydrog Energy 37:1372–1381

    Article  Google Scholar 

  15. Pan H, Zhang YW, Shenoy V, Gao HJ (2011) Effects of H-, N-, and (H, N)-doping on the photocatalytic activity of TiO2. J Phys Chem C 115:12224–112231

    Article  Google Scholar 

  16. Xin YJ, Liu HL, Han L (2011) Study on mechanism of enhanced photocatalytic performance of N-doped TiO2/Ti photoelectrodes by theoretical and experimental methods. J Mater Sci 46:7822–7829. doi:10.1007/s10853-011-5763-6

    Article  Google Scholar 

  17. Liu B, Chen HM, Liu C, Andrews SC, Hahn C, Yang PD (2013) Large-scale synthesis of transition-metal-doped TiO2 nanowires with controllable overpotential. J Am Chem Soc 135:9995–9998

    Article  Google Scholar 

  18. Su R, Bechstein R, Kibsgaard J, Vang RT, Besenbacher F (2012) High-quality Fe-doped TiO2 films with superior visible-light performance. J Mater Chem 22:23755–23758. doi:10.1039/C2JM34298G

    Article  Google Scholar 

  19. Zhu WG, Qiu X, Iancu V, Chen X-Q, Pan H, Wang W, Dimitrijevic NM, Rajh T, Meyer HM III, Paranthaman MP, Stocks GM, Weitering H, Gu B, Eres G, Zhang ZY (2009) Band gap narrowing of titanium oxide semiconductors by noncompensated anion-cation codoping for enhanced visible-light photoactivity. Phys Rev Lett 103:226401

    Article  Google Scholar 

  20. Neville EM, Mattle MJ, Loughrey D, Rajesh B, Rahman M, MacElroy JMD, Sullivan JA, Thampi KR (2012) Carbon-doped TiO2 and carbon, tungsten-codoped TiO2 through sol-gel processes in the presence of melamine borate: reflections through photocatalysis. J Phys Chem C 116:16511–16521

    Article  Google Scholar 

  21. Sang LX, Zhang ZY, Bai GM, Du CX, Ma CF (2012) A photoelectrochemical investigation of the hydrogen-evolving doped TiO2 nanotube arrays electrode. Int J Hydrog Energy 37:854–859

    Article  Google Scholar 

  22. Chen X, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331:746–750

    Article  Google Scholar 

  23. Pan H, Qiu X, Ivanov IN, Meyer HM, Wang W, Zhu WG, Paranthaman MP, Zhang Z, Eres G, Gu B (2009) Fabrication and characterization of brookite-rich, visible light-active TiO2 films for water splitting. Appl Catal B 93:90–95

    Article  Google Scholar 

  24. Lin ZS, Orlov A, Lambert RM, Payne MC (2005) New insights into the origin of visible light photocatalytic activity of nitrogen-doped and oxygen-deficient anatase TiO2. J Phys Chem B 109:20948–20952

    Article  Google Scholar 

  25. Pan H, Gu B, Zhang Z (2009) Phase-dependent photocatalytic ability of TiO2: a first-principles study. J Chem Theory Comput 5:3074–3078

    Article  Google Scholar 

  26. Maeda K, Murakam N, Ohno T (2014) Dependence of activity of rutile titanium(IV) oxide powder for photocatalytic overall water splitting on structural properties. J Phys Chem C 118:9093–9100

    Article  Google Scholar 

  27. Nowotny MK, Sheppard LR, Bak T, Nowotny J (2008) Defect chemistry of titanium dioxide. Application of defect engineering in processing of TiO2-based photocatalysts. J Phys Chem C 112:5275–5300

    Article  Google Scholar 

  28. Albuquerque AR, Bruix A, dos Santos IMG, Sambrano JR, Illas F (2014) DFT study on Ce-doped anatase TiO2: nature of Ce3+ and Ti3+ centers triggered by oxygen vacancy formation. J Phys Chem C 118:9677–9689

    Article  Google Scholar 

  29. Di Valentin C, Pacchioni G, Selloni A (2009) Reduced and n-type doped TiO2: nature of Ti3+ species. J Phys Chem C 113:20543–20552

    Article  Google Scholar 

  30. Sayed FN, Jayakumar OD, Sasikala R, Kadam RM, Bharadwaj SR, Kienle L, Schürmann U, Kaps S, Adelung R, Mittal JP, Tyagi AK (2012) Photochemical hydrogen generation using nitrogen-doped TiO2–Pd nanoparticles: facile synthesis and effect of Ti3+ incorporation. J Phys Chem C 116:12462–12467

    Article  Google Scholar 

  31. Lee ASH, Li K, Zhang Y-W, Pan H (2014) Ab initio study on the effects of dopant-defect cluster on the electronic properties of TiO2-based photocatalysts. Int J Hydrog Energy 39:2049–2055

    Article  Google Scholar 

  32. Robert D (2007) Photosensitization of TiO2 by MxOy and MxSy nanoparticles for heterogeneous photocatalysis applications. Catal Today 122:20–26

    Article  Google Scholar 

  33. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349

    Article  Google Scholar 

  34. Tong H, Ouyang SX, Bi YP, Umezawa N, Oshikiri M, Ye JH (2012) Nano-photocatalytic materials: possibilities and challenges. Adv Mater 24:229–251

    Article  Google Scholar 

  35. Niphadkar PS, Chitale SK, Sonar SK, Deshpande SS, Joshi PN, Awate SV (2014) Synthesis, characterization and photocatalytic behavior of TiO2-SiO2 mesoporous composites in hydrogen generation from water splitting. J Mater Sci 49:6383–6391. doi:10.1007/s10853-014-8365-2

    Article  Google Scholar 

  36. Liu MJ, He L, Liu XN, Liu CB, Luo SL (2014) Reduced graphene oxide and CdTe nanoparticles co-decorated TiO2 nanotube array as a visible light photocatalyst. J Mater Sci 49:2263–2269. doi:10.1007/s10853-013-7922-4

    Article  Google Scholar 

  37. Etacheri V, Seery MK, Hinder SJ, Pillai SC (2011) Oxygen rich titania: a dopant free, high temperature stable, and visible-light active anatase photocatalyst. Adv Funct Mater 21:3744–3752

    Article  Google Scholar 

  38. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  39. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  40. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  41. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  Google Scholar 

  42. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  Google Scholar 

  43. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 23:5188–5192

    Article  Google Scholar 

  44. Lin YC, Wang GM, Reddy J, Wang CC, Zhang JZ, Li Y (2002) The influence of oxygen content on the thermal activation of hematite nanowires. Angew Chem 124:4150–4155

    Google Scholar 

  45. Wang GM, Ling YC, Wang HY, Yang XY, Wang CC, Zhang JZ, Yat Li Y (2012) Hydrogen-treated WO3 nanoflakes show enhanced photostability. Energy Environ Sci 5:6180–6187

    Article  Google Scholar 

  46. Wang GM, Wang HY, Ling YC, Tang YC, Yang XY, Fitzmorris RC, Wang CC, Zhang JZ, Li Y (2011) Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 11:3026–3033

    Article  Google Scholar 

  47. Lu XH, Wang GM, Zhai T, Yu MH, Tong YX, Yat Li Y (2012) Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett 12:1690–1696

    Article  Google Scholar 

  48. Wang GM, Ling YC, Li Y (2012) Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. Nanoscale 4:6682–6691

    Article  Google Scholar 

Download references

Acknowledgements

Hui Pan thanks the supports of the Science and Technology Development Fund from Macao SAR (FDCT-076/2013/A and 068/2014/A2), and Multi-Year Research Grant (MYRG2014-00159-FST) and Start-up Research Grant (SRG-2013-00033-FST) from Research & Development Office at University of Macau. The DFT calculations were performed at High Performance Computing Cluster (HPCC) of Information and Communication Technology Office (ICTO) at University of Macau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, H. Bandgap engineering of oxygen-rich TiO2+x for photocatalyst with enhanced visible-light photocatalytic ability. J Mater Sci 50, 4324–4329 (2015). https://doi.org/10.1007/s10853-015-8984-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8984-2

Keywords

Navigation