Skip to main content
Log in

Characterization of maxillofacial silicone elastomer reinforced with different hollow microspheres

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The composition and properties of silicone–hollow microsphere composites were studied in view of establishing a new type of maxillofacial prosthesis material. Two types of microspheres were used in different concentrations and were well dispersed in the silicone matrix. The mechanical properties of the composites were evaluated. Expancel hollow microspheres improve the density, Shore A hardness, and breaking elongation of the materials but degrade their tensile strength, tear strength, and dynamic mechanical properties, while opposite trends were observed with hollow SiO2 microspheres. Ideal properties for maxillofacial prosthetic applications can thereby be obtained by blending the two types of hollow microspheres in specific proportions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Barnhart GW (1960) A new material and technic in the art of somato prostheses. J Dent Res 39(4):836–844

    Article  Google Scholar 

  2. Sanchez RA, Moore DJ, Cruz DL et al (1992) Comparison of the physical properties of two types of polydimethyl siloxane for fabrication of facial prostheses. J Prosthet Dent 67(5):679–682

    Article  Google Scholar 

  3. Polyzois GL, Hensten-Pettersen A, Kullmann A (1994) An assessment of the physical properties and biocompatibility of three silicone elastomers. J Prosthet Dent 71(5):500–504

    Article  Google Scholar 

  4. Lai JH, Wang LL, Ko CC et al (2002) New organosilicone maxillofacial prosthetic materials. Dent Mater 18(3):281–286

    Article  Google Scholar 

  5. Aziz T, Waters M, Jagger R (2003) Analysis of the properties of silicone rubber maxillofacial prosthetic materials. J Dent 31(1):67–74

    Article  Google Scholar 

  6. Ochiai KT, Nishimura RD, Sheh EC et al (2000) Fabrication of a custom silicone tracheostomal prostheses. J Prosthet Dent 83(5):578–581

    Article  Google Scholar 

  7. Su F, Zhao YM, Shao LQ et al (2006) The test of the mechanical properties of SY-28, SY-20 and MDX-4-4210 silicone elastomers. J US-China Med Sci 3(2):36–40

    Google Scholar 

  8. Craig RG, Koran A, Yu R et al (1978) Color Stability of Elastomers for Maxillofacial Appliances. J Dent Res 57(9):866–871

    Article  Google Scholar 

  9. Kanazawa T, Yoshida H, Furuya Y et al (2000) Sectional prostheses with hollow obturator portion made of thin silicone layer over resin frame. J Oral Rehabil 27(9):760–764

    Article  Google Scholar 

  10. Aziz T, Waters M, Jagger R (2003) Surface modification of an experimental silicone rubber maxillofacial material to improve wettability. J Dent 31(3):213–216

    Article  Google Scholar 

  11. Murata H, Hong G, Hamada T et al (2003) Dynamic mechanical properties of silicone maxillofacial prosthetic materials and the influence of frequency and temperature on their properties. Int J Prosthodont 16(4):369–374

    Google Scholar 

  12. Han Y, Kiat-amnuay S, Powers JM et al (2008) Effect of nano-oxide concentration on the mechanical properties of a maxillofacial silicone elastomer. J Prosthet Dent 100(6):465–473

    Article  Google Scholar 

  13. Hatamleh MM, Haylock C, Watson J et al (2010) Maxillofacial prosthetic rehabilitation in the UK: a survey of maxillofacial prosthetists’ and technologists’ attitudes and opinions. Int J Oral Maxillofac Surg 39(12):1186–1192

    Article  Google Scholar 

  14. Liu Q, Shao LQ, Xiang HF et al (2013) Biomechanical characterization of a low density silicone elastomer filled with hollow microspheres for maxillofacial prostheses. J Biomater Sci Polym Ed 24(11):1378–1390

    Article  Google Scholar 

  15. Fu H, Rahaman MN, Day DE, Brown RF (2011) Hollow hydroxyapatite microspheres as a device for controlled delivery of proteins. J Mater Sci 22(3):579–591

    Google Scholar 

  16. Wang LL, Liu Q, Jing DD et al (2014) Biomechanical properties of nano-TiO2 addition to a medical silicone elastomer: the effect of artificial aging. J Dent 42:475–483

    Article  Google Scholar 

  17. Abazingea M, Jacksonb T, Yang Q (2000) In vitro and in vivo characterization of biodegradable enoxacin microspheres. Eur J Pharm Biopharm 49(2):191–194

    Article  Google Scholar 

  18. Varlamova LP, Cherkasov VK, Semenov NM et al (2009) Effect of the modification of aluminosilicate ash microsphere surfaces on physical-mechanical properties of polyurethane foam. Russ J Appl Chem 82(6):1098–1101

    Article  Google Scholar 

  19. Simon MW, Stafford KT, Ou DL (2008) Nanoclay reinforcement of liquid silicone rubber. J Inorg Organomet Polym Mater 18(3):364–373

    Article  Google Scholar 

  20. Kim J, Yoon S, Yu J (2003) Fabrication of nanocapsules with Au particles trapped inside carbon and silica nanoporous shells. Chemistry Communication. 21(6):790–791

    Article  Google Scholar 

  21. Stevenson I, David L, Gauthier C et al (2001) Influence of SiO2 fillers on the irradiation ageing of silicone rubbers. Polymer 42(22):9287–9292

    Article  Google Scholar 

  22. Chukhlanov VY, Sysoev EP (2000) Use of hollow glass microspheres in organosilicon syntact foam plastics. Glass Ceram 57:47–48

    Article  Google Scholar 

  23. Liliane B (2004) Elastomeric composites. I. Silicone composites. J Appl Polym Sci 93(5):2095–2104

    Article  Google Scholar 

  24. Kosmalska A, Zaborski M, Sokolowska J (2010) The Properties of SiO2/dye composite pigments and their applications for silicone rubber. Polimery. 55(3):215–221

    Google Scholar 

  25. Kulik VM, Boiko AV, Bardakhanov SP et al (2011) Viscoelastic properties of silicone rubber with admixture of SiO2 nanoparticles. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 18:5729–5732

    Article  Google Scholar 

  26. Moore DJ (1994) Overview of materials for extra—oral prostheses[C].The paper of the first international congress on facial prostheses, pp 3–27

  27. Murata H, Hong G, Hamada T et al (2003) Dynamic mechanical properties of silicone maxillofacial prosthetic materials and the influence of frequency and temperature on their properties. International Journal of Prosthodontics 16(4):369–374

    Google Scholar 

  28. Santawisuk W, Kanchanavasita W, Sirisinha C et al (2010) Dynamic viscoelastic properties of experimental silicone soft lining materials. Dent Mater J 29(4):454–460

    Article  Google Scholar 

  29. Kaneko H, Inoue K, Tominaga Y et al (2002) Damping performance of polymer blend/organic filler hybrid materials with selective compatibility. Mater Lett 52:96–99

    Article  Google Scholar 

  30. Wu CY, Wu GZ, Wu CF (2006) Dynamic mechanical properties in blends of poly(styrene-b-isoprene-b-styrene) with aromatic hydrocarbon resin. J Appl Polym Sci 102(5):4157–4164

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported in part by Grants from the National Natural Science Foundation of China (No. 31070857), the Guangdong Province Medical Research Foundation (No. A2014412), the Nanfang Hospital President Foundation (No. 2013B013), the Nanfang Hospital New Technology Foundation (No. 2013014), the Nanfang Hospital Education Foundation (No. 14NJ-MS10), and the Southern Medical University New Started Scientific Research Projects (No. PY2013N038).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Longquan Shao or Jian Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Shao, L., Fan, H. et al. Characterization of maxillofacial silicone elastomer reinforced with different hollow microspheres. J Mater Sci 50, 3976–3983 (2015). https://doi.org/10.1007/s10853-015-8953-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8953-9

Keywords

Navigation