Skip to main content
Log in

A superhydrophobic monolithic material with tunable wettability for oil and water separation

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The development of a convenient method for oil-removal is of great significance for environmental protection. Here, we present a simple method for the removal of oils from water surface based on sponges that we fabricated by solution-immersion processes. The sponges exhibited high selectivity and absorption capacities for various kinds of oils when they were employed as absorptive materials. More importantly, the superhydrophobic sponge could be sustained 400 cycles of compressing test without losing their superhydrophobicity, exhibiting the high elasticity, robustness, and durability. To extend application field, superhydrophobic filter paper was used for oil–water separation. Interestingly, tunable wettability was received when oleophobic silica was employed instead of hydrophobic silica. We expected that this low-cost process can be used for oil-spill cleanup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Su FH, Yao K (2014) Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method. ACS Appl Mater Interfaces 6:8762–8770

    Article  Google Scholar 

  2. Liu CS, Su FH, Liang JZ (2014) Facile fabrication of a robust and corrosion resistant superhydrophobic aluminum alloy surface by a novel method. RSC Adv 4:55556–55564

    Article  Google Scholar 

  3. Kwon G, Kota AK, Li YX, Sohani A, Mabry JM, Tuteja A (2012) On demand separation of oil-water mixtures. Adv Mater 24:3666–3671

    Article  Google Scholar 

  4. Feng L, Zhang ZY, Mai ZH, Ma YM, Liu BQ, Jiang L, Zhu DB (2004) A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angew Chem 116:2046–2048

    Article  Google Scholar 

  5. Nguyen DD, Tai NH, Lee SB, Kuo WS (2012) Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energy Environ Sci 5:7908–7912

    Article  Google Scholar 

  6. Cong HP, Ren XC, Wang P, Yu SH (2012) Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6:2693–2703

    Article  Google Scholar 

  7. Dong XC, Chen J, Ma YW, Wang J, Chan-Park MB, Liu XM, Wang LH, Huang W, Chen P (2012) Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water. Chem Commun 48:10660–10662

    Article  Google Scholar 

  8. Fuertes AB, Marban G, Nevskaia DM (2003) Adsorption of volatile organic compounds by means of activated carbon fibre-based monoliths. Carbon 41:87–96

    Article  Google Scholar 

  9. Adebajo MO, Frost RL, Kloprogge JT, Carmody O, Kokot S (2003) Porous materials for oil spill cleanup: A review of synthesis and absorbing properties. J Porous Mater 10:159–170

    Article  Google Scholar 

  10. Deschamps G, Caruel H, Borredon ME, Bonnin C, Vignoles C (2003) Oil removal from water by selective sorption on hydrophobic cotton fibers. 1. Study of sorption properties and comparison with other cotton fiber-based sorbents. Environ Sci Technol 37:1013–1015

    Article  Google Scholar 

  11. Yuan JK, Liu XG, Akbulut O, Hu JQ, Suib SL, Kong J, Stellacci F (2008) Superwetting nanowire membranes for selective absorption. Nat Nanotechnol 3:332–336

    Article  Google Scholar 

  12. Chu Y, Pan QM (2012) Three-dimensionally macroporous Fe/C nanocomposites as highly selective oil-absorption materials. Acs Appl Mater Interfaces 4:2420–2425

    Article  Google Scholar 

  13. Jiang GH, Hu RB, Xi XG, Wang XH, Wang RJ (2013) Facile preparation of superhydrophobic and superoleophilic sponge for fast removal of oils from water surface. J Mater Res 28:651–656

    Article  Google Scholar 

  14. Sun H, Li A, Zhu Z, Liang W, Zhao X, La P, Deng W (2013) Superhydrophobic activated carbon-coated sponges for separation and absorption. ChemSusChem 6:1057–1062

    Article  Google Scholar 

  15. Gui XC, Wei JQ, Wang KL, Cao AY, Zhu HW, Jia Y, Shu QK, Wu DH (2010) Carbon nanotube sponges. Adv Mater 22:617–621

    Article  Google Scholar 

  16. Hu H, Zhao ZB, Wan WB, Gogotsi Y, Qiu JS (2013) Ultralight and highly compressible graphene aerogels. Adv Mater 25:2219–2223

    Article  Google Scholar 

  17. Xiao N, Ling Z, Zhou Y, Qiu JS (2013) Synthesis and structure of carbon belts made of carbon nanofibers supported on carbon foams. Carbon 61:386–394

    Article  Google Scholar 

  18. Xiao N, Zhou Y, Ling Z, Qiu JS (2013) Synthesis of a carbon nanofiber/carbon foam composite from coal liquefaction residue for the separation of oil and water. Carbon 59:530–536

    Article  Google Scholar 

  19. Hu H, Zhao ZB, Wan WB, Gogotsi Y, Qiu JS (2014) Polymer/graphene hybrid aerogel with high compressibility, conductivity, and “sticky” superhydrophobicity. ACS Appl Mater Interfaces 6:3242–3249

    Article  Google Scholar 

  20. Tao SY, Wang YC, Shi D, An YL, Qiu JS, Zhao YS, Cao Y, Zhang XF (2014) Facile synthesis of highly graphitized porous carbon monoliths with a balance on crystallization and pore-structure. J Mater Chem A 2:12785–12791

    Article  Google Scholar 

  21. Hu H, Zhao ZB, Gogotsi Y, Qiu JS (2014) Compressible carbon nanotube-graphene hybrid aerogels with superhydrophobicity and superoleophilicity for oil sorption. Environ Sci Technol Lett 1:214–220

    Article  Google Scholar 

  22. Li R, Chen CB, Li J, Xu LM, Xiao GY, Yan DY (2014) A facile approach to superhydrophobic and superoleophilic graphene/polymer aerogels. J Mater Chem A 2:3057–3064

    Article  Google Scholar 

  23. Wu C, Huang XY, Wu XF, Qian R, Jiang PK (2013) Mechanically flexible and multifunctional polymer-based graphene foams for elastic conductors and oil-water separators. Adv Mater 25:5658–5662

    Article  Google Scholar 

  24. Zhu Q, Pan QM, Liu FT (2011) Facile removal and collection of oils from water surfaces through superhydrophobic and superoleophilic sponges. J Phys Chem C 115:17464–17470

    Article  Google Scholar 

  25. Calcagnile P, Fragouli D, Bayer IS, Anyfantis GC, Martiradonna L, Cozzoli PD, Cingolani R, Athanassiou A (2012) Magnetically driven floating foams for the removal of oil contaminants from water. ACS Nano 6:5413–5419

    Article  Google Scholar 

  26. Ge B, Zhang ZZ, Men XH, Zhu XT, Zhou XY (2014) Sprayed superamphiphobic coatings on copper substrate with enhanced corrosive resistance. Appl surface sci 293:271–274

    Article  Google Scholar 

  27. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the National Nature Science Foundation of China (Grant Nos. 51335010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuehu Men or Zhaozhu Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2552 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, B., Men, X., Zhu, X. et al. A superhydrophobic monolithic material with tunable wettability for oil and water separation. J Mater Sci 50, 2365–2369 (2015). https://doi.org/10.1007/s10853-014-8756-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8756-4

Keywords

Navigation