Skip to main content
Log in

Cu–Ni alloy electrodeposition on microstructured surfaces

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This research experimentally investigated how the solid fraction level of an array of projecting nickel cylindrical microstructures influenced the electrodeposition of Cu–Ni alloy on the cylindrical microstructures. The electrodeposition of Cu–Ni alloy on a substrate with an array of projecting cylindrical structures resulted in the concentrated precipitation of Cu ions at the top of the cylinders. Relatively more electrodeposited structures were formed at the top surface of the cylinders than at the bottom surface, and electrodeposited structures were not formed at the bottom surface of the substrate when the solid fraction was increased. Structures at the edges of the cylinders’ top surfaces grew larger than the structures at the centers of the surfaces. The heights of the electrodeposited structures decreased as the solid fraction increased. In addition, shadow bands with no electrodeposited structures were observed at the bottom surface of the substrate a certain distance away from the cylinders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shin HC, Dong J, Liu M (2003) Nanoporous structures prepared by an electrochemical deposition process. Adv Mater 15:1610–1614. doi:10.1002/adma.200305160

    Article  Google Scholar 

  2. Li GY, Li XP, Wang H, Yang ZQ, Yao JY, Ding GF (2012) Fabrication and characterization of superhydrophobic surface by electroplating regular rough micro-structures of metal nickel. Microelectron Eng 95:130–134. doi:10.1016/j.mee.2011.12.012

    Article  Google Scholar 

  3. Chen Z, Hao L, Chen A, Song Q, Chen C (2012) A rapid one-step process for fabrication of superhydrophobic surface by electrodeposition method. Electrochim Acta 59:168–171. doi:10.1016/j.electacta.2011.10.045

    Article  Google Scholar 

  4. Michaelis S, Timme HJ, Wycisk M, Binder J (2000) Additive electroplating technology as a post-CMOS process for the production of MEMS acceleration-threshold switches for transportation applications. J Micromech Microeng 10:120–123. doi:10.1088/0960-1317/10/2/304

    Article  Google Scholar 

  5. Ke FS, Huang L, Cai JS, Sun SG (2010) Electroplating synthesis and electrochemical properties of macroporous Sn–Cu alloy electrode for lithium-ion batteries. Electrochim Acta 52:6741–6747. doi:10.1016/j.electacta.2007.04.100

    Article  Google Scholar 

  6. Nikolić ND, Branković G, Maksimović VM, Pavlović MG, Popov KI (2010) Application of pulsating overpotential regime on the formation of copper deposits in the range of hydrogen co-deposition. J Solid State Electrochem 14:331–338. doi:10.1007/s10008-009-0842-1

    Article  Google Scholar 

  7. Lee SM, Jung ID, Ko JS (2008) The effect of the surface wettability of nano protrusions formed on network-type microstructures. J Micromech Microeng 18:125007. doi:10.1088/0960-1317/18/12/125007

    Article  Google Scholar 

  8. Li Y, Jia WZ, Song YY, Xia XH (2007) Superhydrophobicity of 3D porous copper films prepared using the hydrogen bubble dynamic template. Chem Mater 19:5758–5764. doi:10.1021/cm071738j

    Article  Google Scholar 

  9. Ye W, Yan J, Ye Q, Zhou F (2010) Template-free and direct electrochemical deposition of hierarchical dendritic gold microstructures: growth and their multiple applications. J Phys Chem C 114:15617–15624. doi:10.1021/jp105929b

    Article  Google Scholar 

  10. Hu S, Huang W, Li Z (2010) Facile fabrication of 3D dendritic gold nanostructures with an AuSn alloy by square wave potential pulse. Mater Lett 64:1257–1260. doi:10.1016/j.matlet.2010.03.002

    Article  Google Scholar 

  11. Hang T, Hu A, Ling H, Li M, Mao D (2010) Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition. Appl Surf Sci 256:2400–2404. doi:10.1016/j.apsusc.2009.10.074

    Article  Google Scholar 

  12. Gu C, Zhang TY (2008) Electrochemical synthesis of silver polyhedrons and dendritic films with superhydrophobic surfaces. Langmuir 24:12010–12016. doi:10.1021/la802354n

    Article  Google Scholar 

  13. Lee JM, Bae KM, Jung KK, Jeong JH, Ko JS (2014) Creation of microstructured surfaces using Cu–Ni compositeelectrodeposition and their application to superhydrophobic surfaces. Appl Surf Sci 289:14–20. doi:10.1016/j.apsusc.2013.10.066

    Article  Google Scholar 

  14. Qiu R, Zhang XL, Qiao R, Li Y, Kim YI, Kang YS (2007) Cu–Ni dendritic material: synthesis, mechanism discussion, and application as glucose sensor. Chem Mater 19:4174–4180. doi:10.1021/cm070638a

    Article  Google Scholar 

  15. Chang JK, Hsu SH, Sun IW, Tsai WT (2008) Formation of nanoporous nickel by selective anodic etching of the nobler copper component from electrodeposited nickel-copper alloys. J Phys Chem C 112:1371–1376. doi:10.1021/jp0772474

    Article  Google Scholar 

  16. Liu Z, Xia G, Zhu F, Kim S, Markovic N, Chien CL, Searson PC (2008) Exploiting finite size effects in a novel core/shell microstructure. J Appl Phys 103:064313. doi:10.1063/1.2844286

    Article  Google Scholar 

  17. Ollivier A, Muhr L, Delbos S, Grand PP, Matlosz M, Chassaing E (2009) Copper–nickel codeposition as a model for mass-transfercharacterization in copper–indium–selenium thin-film production. J Appl Electrochem 39:2337–2344. doi:10.1007/s10800-009-9918-y

    Article  Google Scholar 

  18. Kim S, Myerson AS (1996) Metastable solution thermodynamic properties and crystal growth kinetics. Ind Eng Chem Res 35:1078–1084. doi:10.1021/ie950327m

    Article  Google Scholar 

  19. Walsh FC, Herron ME (1991) Electrocrystallization and electrochemical control of crystal growth: fundamental considerations and electrodeposition of metals. J Phys D Appl Phys 24:217–225. doi:10.1088/0022-3727/24/2/019

    Article  Google Scholar 

  20. Argoul F, Arneodo A, Grasseau G, Swinney HL (1988) Self-similarity of diffusion-limited aggregates and electrodeposition clusters. Phys Rev B 61:2558–2561. doi:10.1103/PhysRevLett.61.2558

    Google Scholar 

  21. Kaufman JH, Nazzal AI, Melroy OR, Kapitulnik A (1987) Onset of fractal growth: statics and dynamics of diffusion-controlled polymerization. Phys Rev B 35:1881–1890. doi:10.1103/PhysRevB.35.1881

    Article  Google Scholar 

  22. Cassie ABD, Baxter S (1945) Wettability of porous surfaces. Trans Faraday Soc 40:546–551. doi:10.1039/TF9444000546

    Article  Google Scholar 

  23. Jung YC, Bhushan B (2008) Dynamic effects of bouncing water droplets on superhydrophobic surfaces. Langmuir 24:6262–6269. doi:10.1021/la8003504

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Pioneer Research Center Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2010-0019313).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Soo Ko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.M., Ko, J.S. Cu–Ni alloy electrodeposition on microstructured surfaces. J Mater Sci 50, 393–402 (2015). https://doi.org/10.1007/s10853-014-8598-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8598-0

Keywords

Navigation