Skip to main content
Log in

High-temperature thermoelectric properties of p-type skutterudites Ba0.15Yb x Co3FeSb12 and Yb y Co3FeSb9As3

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two series of p-type polycrystalline skutterudites, Ba0.15Yb x Co3FeSb12 and Yb y Co3FeSb9As3 with varying Yb concentrations, were synthesized by solid-state reaction and then densified by hot pressing. The phase and stoichiometries of the resulting materials were characterized by powder X-ray diffraction and energy dispersive spectroscopy, while their high-temperature transport properties were investigated from 300 to 800 K. The Seebeck coefficients and electrical resistivities increased linearly with increasing temperature for the double-filled specimens. The Seebeck coefficients and electrical resistivities did not change very much for the As-substituted specimens. The thermal conductivity for all specimens decreased with increasing temperature up to 700 K, corresponding to the plateau in the Seebeck coefficient, and then increased again due to bipolar diffusion. We find that double filling is a more feasible approach to thermoelectric property optimization than single filling with As substitution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mahan GD (1998) Good thermoelectrics. Solid State Phys 51:81–157

    Google Scholar 

  2. Nolas GS, Sharp JW, Goldsmid HJ (2001) Thermoelectrics: basics principles and new materials developments. Springer, Berlin

    Book  Google Scholar 

  3. Tritt TM (2011) Thermoelectric phenomena, materials, and applications. Annu Rev Mater Res 41:433–448

    Article  Google Scholar 

  4. Nolas GS, Poon J, Kanatzidis MG (2006) Recent developments in bulk thermoelectric materials. MRS Bull 31:199–205

    Article  Google Scholar 

  5. Nolas GS, Morelli DT, Tritt TM (1999) Skurrerudites: a phonon–glass electron–crystal approach to advanced thermoelectric energy conversion applications. Annu Rev Mater Res 29:89–116

    Article  Google Scholar 

  6. Uher C (2001) Skutterudites: prospective novel thermoelectrics. Semiconduct Semimet 69:139–253

    Article  Google Scholar 

  7. Nolas GS, Slack GA, Morelli DT, Tritt TM, Ehrlich AC (1996) The effect of rare-earth filling on the lattice thermal conductivity of skutterudites. J Appl Phys 79:4002–4008

    Article  Google Scholar 

  8. Morelli DT, Meisner GP (1995) Low temperature properties of the filled skutterudite CeFe4Sb12. J Appl Phys 77:3777–3781

    Article  Google Scholar 

  9. Shi X, Yang J, Salvador JR, Chi M, Cho JY, Wang H, Bai S, Yang J, Zhang W, Chen L (2011) Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J Am Chem Soc 133:7837–7846

    Article  Google Scholar 

  10. Choi S, Kurosaki K, Ohishi Y, Muta H, Yamanaka S (2014) Thermoelectric properties of Tl-filled Co-free p-type skutterudites: Tl x (Fe, Ni)4Sb12. J Appl Phys 115:023702

    Article  Google Scholar 

  11. Dong Y, Puneet P, Tritt TM, Nolas GS (2014) Crystal structure and high temperature transport properties of Yb-filled p-type skutterudites Yb x Co2.5Fe1.5Sb12. J Solid State Chem 209:1–5

    Article  Google Scholar 

  12. Tan G, Zheng Y, Yan Y, Tang X (2014) Preparation and thermoelectric properties of p-type filled skutterudites CeyFe4−xNixSb12. J Alloys Compd 584:216–221

    Article  Google Scholar 

  13. Kim D, Kurosaki K, Ohishi Y, Muta H, Yamanaka S (2013) How thermoelectric properties of p-type Tl-filled skutterudites are improved. APL Mater 1:032115

    Article  Google Scholar 

  14. Tan G, Liu W, Chi H, Su X, Wang S, Yan Y, Tang X, Wong-Ng W, Uher C (2013) Realization of high thermoelectric performance in p-type unfilled ternary skutterudites FeSb2+xTe1−x via band structure modification and significant point defect scattering. Acta Mater 61:7693–7704

    Article  Google Scholar 

  15. Tan G, Liu W, Wang S, Yan Y, Li H, Tang X, Uher C (2013) Rapid preparation of CeFe4Sb12 skutterudite by melt spinning: rich nanostructures and high thermoelectric performance. J Mater Chem A 1:12657–12668

    Article  Google Scholar 

  16. Jie Q, Wang H, Liu W, Wang H, Chen G, Ren Z (2013) Fast phase formation of double-filled p-type skutterudites by ball-milling and hot-pressing. Phys Chem Chem Phys 15:6809–6816

    Article  Google Scholar 

  17. Dong Y, Puneet P, Tritt TM, Nolas GS (2013) High-temperature thermoelectric properties of p-type skutterudites YbxCo3FeSb12. Phys Status Solidi RRL 7:418–420

    Article  Google Scholar 

  18. Yu J, Zhao W, Zhou H, Wei P, Zhang Q (2013) Rapid preparation and thermoelectric properties of Ba and In double-filled p-type skutterudite bulk materials. Scripta Mater 68:643–646

    Article  Google Scholar 

  19. Dong Y, Puneet P, Tritt TM, Martin J, Nolas GS (2012) High temperature thermoelectric properties of p-type skutterudites BaxYbyCo4−zFezSb12. J Appl Phys 112:083718

    Article  Google Scholar 

  20. Puneet P, He J, Zhu S, Tritt TM (2012) Thermoelectric properties and Kondo behavior in indium incorporated p-type Ce0.9Fe3.5Ni0.5Sb12 skutterudites. J Appl Phys 112:033710

    Article  Google Scholar 

  21. Yang J, Liu R, Chen Z, Xi L, Yang J, Zhang W, Chen L (2012) Power factor enhancement in light valence band p-type skutterudites. Appl Phys Lett 101:022101

    Article  Google Scholar 

  22. Cho JY, Ye Z, Tessema MM, Waldo RA, Salvador JR, Yang J, Cai W, Wang H (2012) Thermoelectric properties of p-type skutterudites YbxFe3.5Ni0.5Sb12 (0.8 ≤ x ≤1). Acta Mater 60:2104–2110

    Article  Google Scholar 

  23. Nolas GS, Fowler G (2005) Partial filling of skutterudites: optimization for thermoelectric applications. J Mater Res 20:3234–3237

    Article  Google Scholar 

  24. Liu R, Chen X, Qiu P, Liu J, Yang J, Huang X, Chen L (2011) Low thermal conductivity and enhanced thermoelectric performance of Gd-filled skutterudites. J Appl Phys 109:023719

    Article  Google Scholar 

  25. Sharp JW, Jones EC, Williams RK, Martin PM, Sales BC (1995) Thermoelectric properties of CoSb3 and related alloys. J Appl Phys 78:1013–1018

    Article  Google Scholar 

  26. Salvador JR, Yang J, Shi X, Wang H, Wereszczak AA, Kong H, Uher C (2009) Transport and mechanical properties of Yb-filled skutterudites. Philos Mag 89:1517–1534

    Article  Google Scholar 

  27. Grytsiv A, Rogl P, Michor H, Bauer E, Giester G (2013) InyCo4Sb12 skutterudite: phase equilibria and crystal structure. J Electron Mater 42:2940–2952

    Article  Google Scholar 

  28. INCA energy operator manual (2006) Oxford Instrument Analytical, UK

  29. Kraus W, Nolze G (1996) POWDER CELL—a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J Appl Cryst 29:301–303

    Article  Google Scholar 

  30. Mandrus D, Migliori A, Darling TW, Hundley MF, Peterson EJ, Thompson JD (1995) Electronic transport in lightly doped CoSb3. Phys Rev B 52:4926–4931

    Article  Google Scholar 

  31. Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell University, Ithaca

    Google Scholar 

  32. Kurmaev EZ, Moewes A, Shein IR, Finkelstein LD, Ivanovskii AL, Anno H (2004) Electronic structure and thermoelectric properties of skutterudite compounds. J Phys: Condens Matter 16:979

    Google Scholar 

  33. Yang J, Qiu P, Liu R, Xi L, Zheng S, Zhang W, Chen L (2011) Trends in electrical transport of p-type skutterudites RFe4Sb12 (R = Na, K, Ca, Sr, Ba, La, Ce, Pr, Yb) from first-principles calculations and Boltzmann transport theory. Phys Rev B 84:235205

    Article  Google Scholar 

  34. Yang J, Xi L, Zhang W, Chen LD, Yang J (2009) Electrical transport properties of filled CoSb3 skutterudites: a theoretical study. J Electron Mater 38:1397

    Article  Google Scholar 

  35. Li H, Tang XF, Zhang QJ, Uher C (2009) High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase. Appl Phys Lett 94:102114

    Article  Google Scholar 

  36. Berman R (1976) Thermal conductivity in solids. Clarendon Press, Oxford

    Google Scholar 

Download references

Acknowledgements

Y.D. and G.S.N. gratefully acknowledge support from the National Science Foundation and Department of Energy Partnership on Thermoelectric Devices for Vehicle Applications (Grant no. 1048796). The work in Dr. Tritt’s laboratory acknowledges, in part, the support of a KAUST Faculty Initiated Collaboration grant and also some funding from Clemson University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George S. Nolas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Puneet, P., Tritt, T.M. et al. High-temperature thermoelectric properties of p-type skutterudites Ba0.15Yb x Co3FeSb12 and Yb y Co3FeSb9As3 . J Mater Sci 50, 34–39 (2015). https://doi.org/10.1007/s10853-014-8562-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8562-z

Keywords

Navigation