Skip to main content
Log in

Stable zinc-blende ZnO thin films: formation and physical properties

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The development of technologically important material zinc-blende ZnO has been hindered due to the difficulties inherent in obtaining a stable zinc-blende phase. In this paper, we fabricate the stable zinc-blende ZnO on Pt/Ti/SiO2/Si substrate through phase transformation from the originally wurtzite to the zinc-blende phase. X-ray diffraction data in combination with high-resolution TEM measurements provide the direct evidence on the formation of the well-defined zinc-blende structure with predominated (202) orientation. According to the experimental results and first principles calculations, the incorporation of titanium dopants into ZnO system favors the formation of the zinc-blende structure. The platinum (Pt) surface stabilizes the ZnO zinc-blende structure at the interface (thin film) due to its low ZnO/Pt interface energy, preventing the decomposition in ZnO wurtzite and Zn2TiO4. Additionally, magnetic and optical properties of the ZnO zinc-blende thin films are investigated. Unexpectedly, the film is found to exhibit magnetization of ~75 emu/cm3, while its ZnO wurtzite counterpart is non-ferromagnetic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pearton SJ, Norton DP, Ip K, Heo YW, Steiner T (2003) Recent progress in processing and properties of ZnO. Superlattices Microstruct 34(1–2):3–32. doi:10.1016/s0749-6063(03)00093-4

    Article  Google Scholar 

  2. Herng TS, Kumar A, Ong CS, Feng YP, Lu YH, Zeng KY, Ding J (2012) Investigation of the non-volatile resistance change in noncentrosymmetric compounds. Sci Rep 2. doi:http://www.nature.com/srep/2012/120817/srep00587/abs/srep00587.html#supplementary-nformation

  3. Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho S-J, Morkoc H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98(4):041301-041103

    Article  Google Scholar 

  4. Ashrafi A, Ueta A, Avramescu A, Kumano H, Suemune I, Ok YW, Seong TY (2000) Growth and characterization of hypothetical zinc-blende ZnO films on GaAs(001) substrates with ZnS buffer layers. Appl Phys Lett 76(5):550–552. doi:10.1063/1.125851

    Article  Google Scholar 

  5. Lee GH, Kawazoe T, Ohtsu M (2002) Difference in optical bandgap between zinc-blende and wurtzite ZnO structure formed on sapphire (0001) substrate. Solid State Commun 124(5–6):163–165. doi:10.1016/s0038-1098(02)00537-9

    Article  Google Scholar 

  6. Kim SK, Jeong SY, Cho CR (2003) Structural reconstruction of hexagonal to cubic ZnO films on Pt/Ti/SiO2/Si substrate by annealing. Appl Phys Lett 82(4):562–564. doi:10.1063/1.1536253

    Article  Google Scholar 

  7. Ashrafi A, Jagadish C (2007) Review of zincblende ZnO: stability of metastable ZnO phases. J Appl Phys 102(7):071101

    Article  Google Scholar 

  8. Lai YY, Lan YP, Lu TC (2013) Strong light-matter interaction in ZnO microcavities. Light-Sci Appl 2(6):e76. doi:10.1038/lsa.2013.32

    Article  Google Scholar 

  9. Shimada R, Xie J, Avrutin V, Ozgur U, Morkoc H (2008) Cavity polaritons in ZnO-based hybrid microcavities. Appl Phys Lett 92(1):011127. doi:10.1063/1.2830022

    Article  Google Scholar 

  10. Chen JR, Lu TC, Wu YC et al (2009) Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature. Appl Phys Lett 94:061103. doi:10.1063/1.3079398

    Article  Google Scholar 

  11. Sturm C, Hilmer H, Schmidt-Grund R, Grundmann M (2009) Observation of strong exciton-photon coupling at temperatures up to 410 K. New J Phys 11(7):073044. doi:10.1088/1367-2630/11/7/073044

    Article  Google Scholar 

  12. Chen JR, Lu TC, Wu YC et al (2011) Characteristics of exciton-polaritons in ZnO-based hybrid microcavities. Opt Express 19:4101. doi:10.1364/oe.19.004101

    Article  Google Scholar 

  13. Orosz L, Reveret F, Bouchoule S et al (2011) Fabrication and optical properties of a fully-hybrid epitaxial ZnO-based microcavity in the strong-coupling regime. Appl Phys Express 4(7):072001. doi:10.1143/apex.4.072001

    Article  Google Scholar 

  14. Lu TC, Lai YY, Lan YP et al (2012) Room temperature polariton lasing versus photon lasing in a ZnO-based hybrid microcavity. Opt Express 20:5530

    Article  Google Scholar 

  15. Vanmaekelbergh D, van Vugt LK (2011) ZnO nanowire lasers. Nanoscale 3(7):2783–2800. doi:10.1039/c1nr00013f

    Article  Google Scholar 

  16. Lee GH, Kawazoe T, Ohtsu M (2005) Room temperature near-field photoluminescence of zinc-blend and wurtzite ZnO structures. Appl Surf Sci 239(3–4):394–397. doi:10.1016/j.apsusc.2004.06.004

    Article  Google Scholar 

  17. Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186. doi:10.1103/PhysRevB.54.11169

    Article  Google Scholar 

  18. Monkhorst HJ, Pack JD (1976) Special points for brillouin-zone integrations. Phys Rev B 13(12):5188–5192. doi:10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  19. Teke A, Ozgur U, Dogan S, Gu X, Morkoc H, Nemeth B, Nause J, Everitt HO (2004) Excitonic fine structure and recombination dynamics in single-crystalline ZnO. Phys Rev B 70(19):195207. doi:10.1103/PhysRevB.70.195207

    Article  Google Scholar 

  20. Catlow CRA, French SA, Sokol AA, Al-Sunaidi AA, Woodley SM (2008) Zinc oxide: a case study in contemporary computational solid state chemistry. J Comput Chem 29(13):2234–2249. doi:10.1002/jcc.21051

    Article  Google Scholar 

  21. Tseng Y-C, Lin Y-J, Chang H-C, Chen Y-H, Liu C-J, Zou Y-Y (2012) Effects of Ti content on the optical and structural properties of the Ti-doped ZnO nanoparticles. J Lumin 132(2):491–494. doi:10.1016/j.jlumin.2011.08.016

    Article  Google Scholar 

  22. Lin S-S, Huang J-L, Lii D-F (2005) Effect of substrate temperature on the properties of Ti-doped ZnO films by simultaneous rf and dc magnetron sputtering. Mater Chem Phys 90(1):22–30. doi:10.1016/j.matchemphys.2004.08.040

    Article  Google Scholar 

  23. Li HX, Chen Q, Chen XP, Mao QN, Xi JH, Ji ZG (2013) Improvement of resistive switching in ZnO film by Ti doping. Thin Solid Films 537:279–284. doi:10.1016/j.tsf.2013.04.028

    Article  Google Scholar 

  24. Zhong ZY, Zhang T (2013) Microstructure and optoelectronic properties of titanium-doped ZnO thin films prepared by magnetron sputtering. Mater Lett 96:237–239. doi:10.1016/j.matlet.2013.01.025

    Article  Google Scholar 

  25. Lin YC, Hsu CY, Hung SK, Wen DC (2013) Influence of TiO2 buffer layer and post-annealing on the quality of Ti-doped ZnO thin films. Ceram Int 39(5):5795–5803. doi:10.1016/j.ceramint.2012.12.099

    Article  Google Scholar 

  26. Needs RJ, Mansfield M (1989) Calculations of the surface stress tensor and surface-energy of the (111) surrfaces of iridium, platinum and gold. J Phys Condens Matter 1(41):7555–7563. doi:10.1088/0953-8984/1/41/006

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by A-Star SERC 1321202068, Singapore National Research Foundation under its Competitive Research Funding (NRF-CRP 8-2011-06 and NRF2008NRF-CRP002024), MOE-AcRF-Tier-2 (MOE2010-T2-2-121).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chichvarina, O., Herng, T.S., Phuah, K.C. et al. Stable zinc-blende ZnO thin films: formation and physical properties. J Mater Sci 50, 28–33 (2015). https://doi.org/10.1007/s10853-014-8561-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8561-0

Keywords

Navigation