Skip to main content
Log in

Theoretical study on strain-induced variations in electronic properties of monolayer MoS2

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ultrathin MoS2 sheets and nanostructures are promising materials for electronic and optoelectronic devices as well as chemical catalysts. To expand their potential in applications, a fundamental understanding is needed of the electronic structure and carrier mobility as a function of strain. In this paper, the effect of strain on electronic properties of monolayer MoS2 is investigated using ab initio simulations based on density functional theory. Our calculations are performed in both infinitely large two-dimensional (2D) sheets and one-dimensional (1D) nanoribbons which are theoretically cut from the sheets with semiconducting \( [\bar{1}100] \) (armchair) edges. The 2D crystal is studied under biaxial strain, uniaxial strain, and uniaxial stress conditions, while the 1D nanoribbon is studied under a uniaxial stress condition. Our results suggest that the electronic bandgap of the 2D sheet experiences a direct-indirect transition under both tensile and compressive strains. Its bandgap energy (E g) decreases under tensile strain/stress conditions, while for an in-plane compression, E g is initially raised by a small amount and then decreased as the strain varies from 0 to −6 %. On the other hand, E g at the semiconducting edges of monolayer MoS2 nanoribbons is relatively invariant under uniaxial stretches or compressions. The effective masses of electrons at the conduction band minimum (CBM) and holes at the valence band maximum (VBM) are generally decreased as the in-plane extensions or compressions become stronger, but abrupt changes occur when CBM or VBM shifts between different k-points in the first Brillouin zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. doi:10.1126/science.1102896

    Article  Google Scholar 

  2. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102:10451–10453. doi:10.1073/pnas.0502848102

    Article  Google Scholar 

  3. Butler SZ, Hollen SM, Cao L, Cui Y, Gupta JA, Gutiérrez HR, Heinz TF, Hong SS, Huang J, Ismach AF, Johnston-Halperin E, Kuno M, Plashnitsa VV, Robinson RD, Ruoff RS, Salahuddin S, Shan J, Shi L, Spencer MG, Terrones M, Windl W, Goldberger JE (2013) Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7:2898–2926. doi:10.1021/nn400280c

    Article  Google Scholar 

  4. Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically Thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805. doi:10.1103/PhysRevLett.105.136805

    Article  Google Scholar 

  5. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotech 6:147–150. doi:10.1038/nnano.2010.279

    Article  Google Scholar 

  6. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotech 7:699–712. doi:10.1038/nnano.2012.193

    Article  Google Scholar 

  7. Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H (2011) Single-Layer MoS2 Phototransistors. ACS Nano 6:74–80. doi:10.1021/nn2024557

    Article  Google Scholar 

  8. Sundaram RS, Engel M, Lombardo A, Krupke R, Ferrari AC, Avouris P, Steiner M (2013) Electroluminescence in Single Layer MoS2. Nano Lett 13:1416–1421. doi:10.1021/nl400516a

    Google Scholar 

  9. Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317:100–102. doi:10.1126/science.1141483

    Article  Google Scholar 

  10. Tuxen A, Kibsgaard J, Gøbel H, Lægsgaard E, Topsøe H, Lauritsen JV, Besenbacher F (2010) Size threshold in the dibenzothiophene adsorption on MoS2 nanoclusters. ACS Nano 4:4677–4682. doi:10.1021/nn1011013

    Article  Google Scholar 

  11. Holzapfel WB (1996) Physics of solids under strong compression. Rep Prog Phys 59:29. doi:10.1088/0034-4885/59/1/002

    Article  Google Scholar 

  12. Osbourn GC (1982) Strained-layer superlattices from lattice mismatched materials. J Appl Phys 53:1586–1589. doi:10.1063/1.330615

    Article  Google Scholar 

  13. Ni ZH, Yu T, Lu YH, Wang YY, Feng YP, Shen ZX (2008) Uniaxial strain on graphene: raman spectroscopy study and band-gap opening. ACS Nano 2:2301–2305. doi:10.1021/nn800459e

    Article  Google Scholar 

  14. Pereira VM, Castro Neto AH (2009) Strain engineering of graphene’s electronic structure. Phys Rev Lett 103:046801. doi:10.1103/PhysRevLett.103.046801

    Article  Google Scholar 

  15. Ding F, Ji H, Chen Y, Herklotz A, Dörr K, Mei Y, Rastelli A, Schmidt OG (2010) stretchable graphene: a close look at fundamental parameters through biaxial straining. Nano Lett 10:3453–3458. doi:10.1021/nl101533x

    Article  Google Scholar 

  16. Pan W, Xiao J, Zhu J, Yu C, Zhang G, Ni Z, Watanabe K, Taniguchi T, Shi Y, Wang X (2012) Biaxial compressive strain engineering in graphene/boron nitride heterostructures. Sci Rep 2:893. doi:10.1038/srep00893

    Google Scholar 

  17. He K, Poole C, Mak KF, Shan J (2013) Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett 13:2931–2936. doi:10.1021/nl4013166

    Article  Google Scholar 

  18. Conley HJ, Wang B, Ziegler JI, Haglund RF, Pantelides ST, Bolotin KI (2013) Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett 13:3626–3630. doi:10.1021/nl4014748

    Article  Google Scholar 

  19. Bertolazzi S, Brivio J, Kis A (2011) Stretching and breaking of ultrathin MoS2. ACS Nano 5:9703–9709. doi:10.1021/nn203879f

    Article  Google Scholar 

  20. Johari P, Shenoy VB (2012) Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS Nano 6:5449–5456. doi:10.1021/nn301320r

    Article  Google Scholar 

  21. Sengupta A, Ghosh RK, Mahapatra S (2013) Performance analysis of strained monolayer MoS2 mosfet. IEEE Trans Electron Devices 60:2782–2787. doi:10.1109/TED.2013.2273456

    Article  Google Scholar 

  22. Scalise E, Houssa M, Pourtois G, Afanas’ev VV, Stesmans A (2014) First-principles study of strained 2D MoS2. Phys E 56:416–421. doi:10.1016/j.physe.2012.07.029

    Article  Google Scholar 

  23. Yun WS, Han SW, Hong SC, Kim IG, Lee JD (2012) Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX 2 semiconductors (M = Mo, W; X = S, Se, Te). Phys Rev B 85:033305. doi:10.1103/PhysRevB.85.033305

    Article  Google Scholar 

  24. Yue Q, Kang J, Shao Z, Zhang X, Chang S, Wang G, Qin S, Li J (2012) Mechanical and electronic properties of monolayer MoS2 under elastic strain. Phys Lett A 376:1166–1170. doi:10.1016/j.physleta.2012.02.029

    Article  Google Scholar 

  25. Shi H, Pan H, Zhang Y-W, Yakobson BI (2013) Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2. Phys Rev B 87:155304. doi:10.1103/PhysRevB.87.155304

    Article  Google Scholar 

  26. Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953. doi:10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  27. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169. doi:10.1103/PhysRevB.54.11169

    Article  Google Scholar 

  28. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. doi:10.1103/PhysRevLett.77.3865

    Article  Google Scholar 

  29. Sham LJ, Schlüter M (1983) Density-functional theory of the energy gap. Phys Rev Lett 51:1888–1891. doi:10.1103/PhysRevLett.51.1888

    Article  Google Scholar 

  30. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207–8215. doi:10.1063/1.1564060

    Article  Google Scholar 

  31. Fuchs F, Furthmüller J, Bechstedt F, Shishkin M, Kresse G (2007) Quasiparticle band structure based on a generalized Kohn–Sham scheme. Phys Rev B 76:115109. doi:10.1103/PhysRevB.76.115109

    Article  Google Scholar 

  32. Hafner J (2008) Ab-initio simulations of materials using VASP: density-functional theory and beyond. J Comput Chem 29:2044–2078. doi:10.1002/jcc.21057

    Article  Google Scholar 

  33. Ellis JK, Lucero MJ, Scuseria GE (2011) The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory. Appl Phys Lett 99:261908. doi:10.1063/1.3672219

    Article  Google Scholar 

  34. Cheiwchanchamnangij T, Lambrecht WRL (2012) Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys Rev B 85:205302. doi:10.1103/PhysRevB.85.205302

    Article  Google Scholar 

  35. Yu Y, Li C, Liu Y, Su L, Zhang Y, Cao L (2013) Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci Rep 3:1866. doi:10.1038/srep01866

    Google Scholar 

  36. Böker T, Severin R, Müller A, Janowitz C, Manzke R, Voß D, Krüger P, Mazur A, Pollmann J (2001) Band structure of MoS2, MoSe2, and α-MoTe2: angle-resolved photoelectron spectroscopy and ab initio calculations. Phys Rev B 64:235305. doi:10.1103/PhysRevB.64.235305

    Article  Google Scholar 

  37. Lu P, Wu X, Guo W, Zeng XC (2012) Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes. Phys Chem Chem Phys 14:13035–13040. doi:10.1039/c2cp42181j

    Article  Google Scholar 

  38. Peelaers H, Van de Walle CG (2012) Effects of strain on band structure and effective masses in MoS2. Phys Rev B 86:241401. doi:10.1103/PhysRevB.86.241401

    Article  Google Scholar 

  39. Li Y, Zhou Z, Zhang S, Chen Z (2008) MoS2 Nanoribbons: high stability and unusual electronic and magnetic properties. J Am Chem Soc 130:16739–16744. doi:10.1021/ja805545x

    Article  Google Scholar 

  40. Pan H, Zhang Y-W (2012) Edge-dependent structural, electronic and magnetic properties of MoS2 nanoribbons. J Mater Chem 22:7280–7290. doi:10.1039/c2jm15906f

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by an appointment of A. M. Dongare to the Faculty Research Participation Program at the U.S. Army Research Laboratory (USARL) administered by the Oak Ridge Institute for Science and Education through an interagency between the U.S. Department of Energy and ASARL. The authors R. R. Namburu, T. P. O’Regan, and M. Dubey acknowledge the support of the US Army Research Laboratory (ARL) Director’s Strategic Initiative (DSI) program on interfaces in stacked 2D atomic layered materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinash M. Dongare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, L., Namburu, R.R., O’Regan, T.P. et al. Theoretical study on strain-induced variations in electronic properties of monolayer MoS2 . J Mater Sci 49, 6762–6771 (2014). https://doi.org/10.1007/s10853-014-8370-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8370-5

Keywords

Navigation